K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 3: 

a) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có 

AD chung

\(\widehat{HAD}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))

Do đó: ΔAHD=ΔAKD(Cạnh huyền-góc nhọn)

b)Ta có: ΔAHD=ΔAKD(cmt)

nên AH=AK(hai cạnh tương ứng) và DH=DK(hai cạnh tương ứng)

Ta có: AH=AK(cmt)

nên A nằm trên đường trung trực của HK(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: DH=DK(cmt)

nên D nằm trên đường trung trực của HK(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AD là đường trung trực của HK

hay AD\(\perp\)HK(đpcm)

a: Xét ΔAHD vuông tại H và ΔAKD vuông tại K có

AD chung

góc HAD=góc KAD

=>ΔAHD=ΔAKD

b: AH=AK

DH=DK

=>AD là trung trực của HK

c: Gọi M là giao của DK với AH

Xét ΔAMC có

MK,CH là đường cao

MK cắt CH tại D

=>D là trực tâm

=>AD vuông góc MC

mà AD vuông góc CE

nên C,M,E thẳng hàng

=>AH,KD,CE đồng quy tại M

12 tháng 5 2017

a: \(\widehat{DAE}=\dfrac{1}{2}\left(\widehat{HAB}+\widehat{HAC}\right)=\dfrac{1}{2}\cdot90^0=45^0\)

b: Xét ΔAEH và ΔAEF có

AE chung

\(\widehat{HAE}=\widehat{FAE}\)

AH=AF

Do đó: ΔAEH=ΔAEF

c: Ta có: ΔAEH=ΔAEF

nên \(\widehat{AHE}=\widehat{AFE}=90^0\)

=>EF⊥AC

mà AC⊥AB

nên EF//AB

18 tháng 2 2022

thanks bạn nha