2019 X 23+2x 2019-2019 x 11
4038 X 14 + 6x4038 - 2019x 20
giải giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+2019}{x+2018}=\frac{4038}{4037}\)
\(\Rightarrow\left(x+2019\right)4037=\left(x+2018\right)4038\)
\(\Rightarrow4037x+\left(4037\times2019\right)=4038x+\left(4038\times2018\right)\)
\(\Rightarrow4037x+8150703=4038x+8148684\)
\(\Rightarrow4037x-4038x=-8150703+8148684\)
\(\Rightarrow-x=-2019\)
\(\Rightarrow x=2019\)
P/s: Số to kinh -_- Ko chắc đúng đâu.
Với x=2018 thì 2019=x+1
\(\Rightarrow A=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+...+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(\Rightarrow A=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)
\(\Rightarrow A=1\)
ta có: x = 2018 => 2019 = x + 1. Do đó:
\(C=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-1.\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-1.\)
\(=x-1=2019-1=2018\)
Vậy C = 2018 với x = 2018.
Học tốt nhé ^3^
\(Ta \) \(có :\)
\(x = 2018\)\(\Leftrightarrow\)\(x + 1 = 2019\)
\(Thay \) \(x + 1 = 2019\)\(vào \) \(C , ta \) \(được :\)
\(C = x\)\(15\)\(- ( x + 1 ).x\)\(14\)\(+ ( x + 1 ).x\)\(13\) \(- ( x + 1 ).x\)\(12\) \(+ ...+ ( x + 1 ).x - 1\)
\(C = x\)\(15\)\(- x\)\(15\)\(- x\)\(14\) \(+ x\)\(14\) \(+ x\)\(13\)\(- x\)\(13\)\(- x\)\(12\)\(+ ... + x^2 + x - 1\)
\(C = x - 1\)
\(Thay \) \(x = 2018\) \(vào \) \(C\) \(, ta \) \(được :\)
\(C = 2018 - 1 = 2017\)
Ta chứng minh 1 bổ đề sau: Với a;b lớn hơn hoặc bằng 1 thì \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)
Thật vậy: \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\Leftrightarrow\frac{a^2+b^2+2}{\left(1+a^2\right)\left(1+b^2\right)}\ge\frac{2}{1+ab}\)
\(\Leftrightarrow\left(a^2+b^2+2\right)\left(1+ab\right)\ge2\left(1+a^2\right)\left(1+b^2\right)\)
\(\Leftrightarrow a^2+a^3b+b^2+b^3a+2+2ab\ge2a^2+2b^2+2a^2b^2+2\)
\(\Leftrightarrow a^3b+b^3a+2ab-a^2-b^2-2a^2b^2\ge0\)
\(\Leftrightarrow ab\left(a^2+b^2-2ab\right)-\left(a^2+b^2-2ab\right)\ge0\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\)(đúng với a;b>=1)
Trở lại bđt trong bài: \(\frac{2019}{2019+x^2}+\frac{2019}{2019+y^2}\ge\frac{4038}{2019+xy}\)
\(\Leftrightarrow\frac{1}{2019+x^2}+\frac{1}{2019+y^2}\ge\frac{2}{2019+xy}\) bđt này tương tự với bđt vừa cm trong bài,với x;y là hoán vị của a;b và 2019 có vai trò như 1
đk : \(x\ge-3\) Viết phương trình thành \(x^4\left(\sqrt{x+3}-2\right)=2019\left(1-x\right)\)
\(\Leftrightarrow\frac{x^4\left(\sqrt{x+3}-2\right)\left(\sqrt{x+3}+2\right)}{(\sqrt{x+3}+2)}=2019\left(1-x\right)\) \(\Leftrightarrow\frac{x^4\left(x-1\right)}{\left(\sqrt{x+3}+2\right)}+2019\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)[\frac{x^4}{\sqrt{x+3}+2}+2019]=0\Leftrightarrow x=1.\) Vì \(\frac{x^4}{\sqrt{x+3}+2}+2019>0\) với mọi giá trị của x thuộc tập xác định.
Đáp số x = 1
2019 X 23+2x 2019-2019 x 11
2019 x (23+2-11 )
2019 x 14 = 28266
4038 X 14 + 6x4038 - 2019x 20
4038 x (14 + 6) - 2019 x 20
4038 x 20 - 2019 x 20
(4038 - 2019) x 20
2019 x 20
40380