Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Sửa đề cho bạn luôn nhé!
\(\text{Ta có:}\)
\(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)
\(\text{Nhân cả hai vế của đẳng thức trên với}\) \(a^2+b^2+c^2\ne0\) \((do\) \(a,b,c\ne0\)),\(\text{ ta được:}\)
\(x^2+y^2+z^2=\left(a^2+b^2+c^2\right)\left(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\right)\) \(\left(1\right)\)
\(\text{Khi đó, ta khai triển vế phải của}\) \(\left(1\right)\) \(\text{thì} \) \(\left(1\right)\) \(\text{trở thành:}\)
\(VP=x^2+\dfrac{a^2y^2}{b^2}+\dfrac{a^2z^2}{c^2}+\dfrac{b^2x^2}{a^2}+y^2+\dfrac{b^2z^2}{c^2}+\dfrac{c^2x^2}{a^2}+\dfrac{c^2y^2}{b^2}+z^2\)
\(\text{So sánh vế trái của đẳng thức}\) \(\left(1\right)\), \(\text{ta dễ dàng nhận thấy cả hai vế có cùng đa thức}\) \(x^2+y^2+z^2\) \(\text{nên ta có thể viết lại }\) \(\left(1\right)\) \(\text{như sau:}\)
\(\dfrac{a^2y^2}{b^2}+\dfrac{a^2z^2}{c^2}+\dfrac{b^2x^2}{a^2}+\dfrac{b^2z^2}{c^2}+\dfrac{c^2x^2}{a^2}+\dfrac{c^2y^2}{b^2}=0\)
\(\Leftrightarrow\) \(\left(\dfrac{b^2x^2}{a^2}+\dfrac{c^2x^2}{a^2}\right)+\left(\dfrac{c^2y^2}{b^2}+\dfrac{a^2y^2}{b^2}\right)+\left(\dfrac{a^2z^2}{c^2}+\dfrac{b^2z^2}{c^2}\right)=0\)
\(\Leftrightarrow\) \(\dfrac{x^2}{a^2}\left(b^2+c^2\right)+\dfrac{y^2}{b^2}\left(c^2+a^2\right)+\dfrac{z^2}{c^2}\left(a^2+b^2\right)=0\) \(\left(2\right)\)
\(\text{Mặt khác, ta cũng có }\) \(a,b,c\ne0\) (gt) nên \(a^2,b^2,c^2\ne0;\) \(a^2+b^2\ne0;\) \(b^2+c^2\ne0\) và \(c^2+a^2\ne0\) \(\left(3\right)\)
\(Từ\) \(\left(2\right)\) \(và\) \(\left(3\right)\),\(\text{ ta dễ dàng suy ra được }\) \(x=y=z=0\)
\(Vậy \) \(x^{2019}+y^{2019}+z^{2019}=0\) \((đpcm)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Có: \(x+y+z=\frac{1}{2}\Leftrightarrow2x+2y+2z=1\)
Mặt khác: \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{xyz}=4\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2x+2y+2z}{xyz}=4\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}=4\)
\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=4\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\) ( vì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>0\) )
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{\frac{1}{2}}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{1}{x+y+z}-\frac{1}{z}=\frac{-\left(x+y\right)}{z\left(x+y+z\right)}\)
\(\Leftrightarrow\left(x+y\right)\left(zx+yz+z^2\right)+xy\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(xy+yz+zx+z^2\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x^{2021}+y^{2021}=0\\y^{2017}+z^{2017}=0\\z^{2019}+x^{2019}=0\end{matrix}\right.\)\(\Leftrightarrow Q=0\)
Vậy...
![](https://rs.olm.vn/images/avt/0.png?1311)
Với x, y khác 0
Ta có:
\(a^2+b^2=1\Leftrightarrow\left(a^2+b^2\right)^2=1\Leftrightarrow a^4+2a^2b^2+b^4=1\)
Từ bài ra ta suy ra:
\(\frac{a^4}{x}+\frac{b^4}{y}=\frac{a^4+2a^2b^2+b^4}{x+y}\)
<=> \(a^4\left(x+y\right)y+b^4\left(x+y\right)x=a^4xy+2a^2b^2xy+b^4xy\)
<=> \(a^4y^2+b^4x^2-2a^2y.b^2x=0\)
<=> \(\left(a^2y-b^2x\right)^2=0\)
<=> \(a^2y-b^2x=0\)
<=> \(a^2y=b^2x\)
Câu b em xem lại đề nhé: Thử \(a=b=\frac{1}{\sqrt{2}};x=y=1\)vào ko thỏa mãn