Giá trị nhỏ nhất của biểu thức A=\(2x^2+y^2-2xy+4x+2y+5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2x^2+y^2-2xy+4x+2y+5\)
\(A=\left(x^2+6x+9\right)+\left(y^2-2xy-2y+x^2-2x+1\right)-5\)
\(A=\left(x^2+6x+9\right)+\left[y^2-2y\left(x-1\right)+\left(x^2-2x+1\right)\right]-5\)
\(A=\left(x^2+6x+9\right)+\left[y^2-2y\left(x-1\right)+\left(x-1\right)^2\right]-5\)
\(A=\left(x+3\right)^2+\left(y-x+1\right)^2-5\ge-5\)
Dấu "=" xảy ra khi x=-3 và y=-4
\(A=2x^2+y^2-2xy+4x+2y+5\)
=> \(A=y^2-2y\left(x-1\right)+\left(x-1\right)^2-\left(x-1\right)^2+2x^2+4x+5\)
=> \(A=\left(y-x+1\right)^2-x^2+2x-1+2x^2+4x+5\)
=> \(A=\left(y-x+1\right)^2-x^2+6x+4\)
=> \(A=\left(y-x+1\right)^2-\left(x^2-2.x.3+9\right)+13\)
=> \(A=\left(y-x+1\right)^2-\left(x-3\right)^2+13\)
Có \(\left(y-x+1\right)^2\ge0\)
\(\left(x-3\right)^2\ge0\)
=> \(\left(y-x+1\right)^2-\left(x-3\right)^2+13\ge13\)
=> \(A\ge13\)
Vậy Amin = 13 <=> \(\hept{\begin{cases}y-x+1=0\\x-3=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)
a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)
Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)
\(\Rightarrow\left(2x-3\right)^2+91\ge91\)
hay A \(\ge91\)
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)
<=> 2x-3=0
<=> 2x=3
<=> \(x=\frac{3}{2}\)
Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)
b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)
Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x+\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)
\(C=2x^2+2xy+y^2-2x+2y+2\)
\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)
\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)
Ta có:
\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)
\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)
hay C\(\ge\)1
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)
Vậy Min C=1 đạt được khi y=1 và x=0
Câu 1 :
\(E=4x^2+y^2-4x-2y+3\)
\(E=\left(2x\right)^2-2\cdot2x\cdot1+1^2+y^2-2\cdot y\cdot1+1^2+1\)
\(E=\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=1\end{cases}}\)
Câu 2 :
\(G=x^2+2y^2+2xy-2y\)
\(G=x^2+2xy+y^2+y^2-2.y\cdot1+1^2-1\)
\(G=\left(x+y\right)^2+\left(y-1\right)^2-1\ge-1\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=0\\y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)
\(A=x^2-2xy+y^2+x^2+4x+2y+5\)
\(A=\left(x-y\right)^2-2\left(x-y\right)+x^2+6x+5\)
\(A=\left(x-y\right)^2-2\left(x-y\right).1+1^2+x^2+6x+4\)
\(A=\left(x-y-1\right)^2+\left(x+3\right)^2-5\)
Vậy: MinA = -5 khi............
\(N=2x^2+y^2+2xy-4x-2y+3\)
\(N=\left(x^2+2xy+y^2\right)+x^2-4x-2y+3\)
\(N=\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]+\left(x^2-2x+1\right)+1\)
\(N=\left(x+y-1\right)^2+\left(x-1\right)^2+1\)
Mà \(\left(x+y-1\right)\ge0\forall x;y\)
\(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow N\ge1\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x+y-1=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=0\\x=1\end{cases}}\)
Vậy \(N_{Min}=1\Leftrightarrow\left(x;y\right)=\left(1;0\right)\)
\(N=2x^2+y^2+2xy-4x-2y\)\(+3\)
\(=\left(x^2+2xy+y^2\right)+x^2-2\left(2x+y\right)+3\)
\(=\left[\left(x+y\right)^2-2\left(2x+y\right)+1\right]+2+x^2\)
\(=\left(x+y+1\right)^2+x^2+2\)
\(Do\)\(\left(x+y+1\right)^2\)\(\ge\)\(0\)\(\forall\)\(x\)\(;\)\(y\)
\(x^2\)\(\ge\)\(0\)\(\forall\)\(x\)
=.>\(\left(x+y+1\right)^2+x^2+2\)\(\ge\)\(2\)\(\forall\)\(x\)\(;\)\(y\)
=>\(N\)\(\ge\)\(2\)\(\forall\)\(x\)\(;\)\(y\)
Dấu = xảy ra khi:
\(\hept{\begin{cases}\left(x+y+1\right)^2=0\\x^2=0\end{cases}}\)
=>\(\hept{\begin{cases}x+y+1=0\\x=0\end{cases}}\)
=>\(\hept{\begin{cases}x+y=-1\\x=0\end{cases}}\)
=>\(\hept{\begin{cases}y=-1\\x=0\end{cases}}\)
Vậy \(N_{min}\)\(=\)\(2\)khi \(y=-1\)\(;\)\(x=0\)
Chúc pạn họk tốt~~~!!! :3
A = 2x2 + y2 - 2xy + 4x + 2y + 5
= (x2 + y2 + 1 +2y - 2xy - 2x) + (x2 +6x + 9) - 5
= (y + 1 - x)2 + (x + 3)2 - 5 ≥ -5
Dấu "=" xảy ra khi y + 1 - x = x + 3 = 0 <=> x = -3; y = -4
Vậy minA = -5 khi x = -3; y = -4
A=2x2+y2−2xy+4x+2y+5
= (x2-2xy+y2) -(2x-2y) +1+(x2+6x+9)-5
=(x-y)2 -2(x-y)+1+(x+3)2-5
=(x-y-1)2 +(x+3)2-5
=> MinA=-5 khi x=-3 và y=-4
\(A=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1+x^2+6x+9+1978\)
\(=\left(x-y\right)^2+2\left(x-y\right)+1+\left(x+3\right)^2+1978\)
\(=\left(x-y+1\right)^2+\left(x+3\right)^2+1978\ge1978\)
\(A_{min}=1978\) khi \(\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)
\(A=2x^2+2xy+y^2-2x+2y+2\)
\(=x^2-4x+4+x^2+y^2+1+2x+2y+2xy-3\)
\(=\left(x-2\right)^2+\left(x+y+1\right)^2-3\ge-3\)
Dấu \(=\)khi \(\hept{\begin{cases}x-2=0\\x+y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=-3\end{cases}}\).