K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

-4n+1=1-4n

1-4n chia hết 2n+3

(1-4n)  + (2n+3) chia hết 2n+3

(1-4n)  + 2(2n+3) chia hết 2n+3

(1-4n)  + (4n+6) chia hết 2n+3

1-4n +4n+6  chia hết 2n+3

7  chia hết 2n+3

 2n+3 thuộc Ư(7)={-1;1;-7;7}

n thuộc {-2;-1;-5;2}

8 tháng 2 2017

Tại sao lại vậy?Sao -4n+1 lại=1-4n?Mà mình đã làm xong rồi nhưng kết quả khác bạn.Dù sao cũng thank you bạn

19 tháng 1 2021

\(4n+3⋮3n+2\)

\(12n+9⋮3n+2\)

\(4\left(3n+2\right)-3⋮3n-2\)

\(-3⋮3n+2\)hay \(3n+2\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)

dễ rồi tự làm nhé ! 

\(n-5⋮2n+3\)

\(2n-10⋮2n+3\)

\(2n+3-13⋮2n+3\)

\(-13⋮2n+3\)hay \(2n+3\inƯ\left(-13\right)=\left\{\pm1;\pm13\right\}\)

dễ rồi tự làm nhé ! 

30 tháng 12 2024

a;   (2n + 1) ⋮ (6  -n)

     [-2.(6 - n) + 13] ⋮ (6 - n)

                        13 ⋮ (6 - n)

       (6 - n) ϵ  Ư(13) = {-13; -1; 1; 13}

        Lập bảng ta có:

6 - n -13 -1 1 13
n 19 7 5 -7
n ϵ Z  tm tm tm tm

Theo bảng trên ta có: n ϵ {19; 7; 5; -7} 

Vậy các giá trị nguyên của n thỏa mãn đề bài là:

n ϵ {19; 7; 5; -7} 

   

 

 

30 tháng 12 2024

b; 3n ⋮ (5  - 2n)

   6n ⋮ (5  - 2n)

  [15 - 3(5 - 2n)] ⋮ (5  - 2n)

     15 ⋮ (5  -2n) 

  (5  - 2n) ϵ Ư(15) = {-15; -1; 1; 15}

Lập bảng ta có:

5 - 2n -15 -1 1 15
n 10 3 2 -5
n ϵ Z tm tm tm tm

  Theo bảng trên ta có: n ϵ {10; 3; 2; -5}

Vậy các giá trị nguyên n thỏa mãn đề bài là:

n ϵ {-5; 2; 3; 10}

 

14 tháng 7 2023

a) \(-7n+3⋮n-1\)

\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)

\(\Rightarrow-7n+3+7n-7⋮n-1\)

\(\Rightarrow-4⋮n-1\)

\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)

\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)

b) \(4n+5⋮4-n\)

\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)

\(\Rightarrow4n+5-4n+16⋮4-n\)

\(\Rightarrow21⋮4-n\)

\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)

\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)

c) \(3n+4⋮2n+1\)

\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)

\(\Rightarrow6n+8-6n-3+1⋮2n+1\)

\(\Rightarrow5⋮2n+1\)

\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)

\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)

d) \(4n+7⋮3n+1\)

\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)

\(\Rightarrow12n+21-12n-4⋮3n+1\)

\(\Rightarrow17⋮3n+1\)

\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)

\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)

14 tháng 7 2023

a) Ta có: -7n + 3 chia hết cho n - 1

=> (-7n + 3) % (n - 1) = 0

=> -7n + 3 = k(n - 1), với k là một số nguyên

=> -7n + 3 = kn - k => (k - 7)n = k - 3

=> n = (k - 3)/(k - 7),

với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.

b) Ta có: 4n + 5 chia hết cho 4 - n

=> (4n + 5) % (4 - n) = 0

=> 4n + 5 = k(4 - n), với k là một số nguyên

=> 4n + 5 = 4k - kn

=> (4 + k)n = 4k - 5

=> n = (4k - 5)/(4 + k), với 4 + k khác 0

Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.

c) Ta có: 3n + 4 chia hết cho 2n + 1

=> (3n + 4) % (2n + 1) = 0

=> 3n + 4 = k(2n + 1), với k là một số nguyên

=> 3n + 4 = 2kn + k

=> (2k - 3)n = k - 4

=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0

Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.

d) Ta có: 4n + 7 chia hết cho 3n + 1

=> (4n + 7) % (3n + 1) = 0

=> 4n + 7 = k(3n + 1), với k là một số nguyên

=> 4n + 7 = 3kn + k

=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0

Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.

23 tháng 2 2021

a)Ta có: 2n+9 chia hết n+3

<=>(2n+9)-2(n+3) chia hết n+3

<=>(2n+9)-(2n+6) chia hết n+3

<=>3 chia hết n+3

<=>n+3 thuộc {1;3}

<=>n=0

Vậy n = 0

b) Ta có 3n-1 chia hết cho 3-2n

=> 6n-2 chia hết cho 3-2n

=> 3(3-2n)-11 chia hết cho 3-2n

=> 11 chia hết cho 3-2n

=> 3-2n là ước của 11 và n là số tự nhiên => 3-2n thuộc {1;11}

• 3-2n=1 => n=1

• 3-2n=11=> n ko là số tự nhiên

Vậy n=1

c) (15 - 4n) chia hết cho n

=> 15 chia hết cho n
=> n ∈ Ư(15) = {-15; -5; -3; -1; 1; 3; 5; 15}
mà n ∈ N và n < 4
=> n = {1; 3}

d)  n=7 vì (n+13)chia hết cho (n-5) và n lớn hơn 5 

e) 15-2n = 13+ (2-2n) = 13+2(1-n) : n-1 = 

13n1213n-1-2

=> n-1 là ước dương của 13

=> n-1 = 13 hoặc n-1 = 1 hoặc n = -1 hoặc n=-13

=> n=14 hoặc n= 2 hoặc n=0 howjc n=-12

Mà n thuộc N và n<8 => n=0 hoặc n=2

g)

6n+94n16n+9⋮4n−1

2.(6n+9)4n1⇒2.(6n+9)⋮4n−1

12n+184n1⇒12n+18⋮4n−1

12n3+214n1⇒12n−3+21⋮4n−1

3.(4n1)+214n1⇒3.(4n−1)+21⋮4n−1

Vì 3.(4n1)4n1214n13.(4n−1)⋮4n−1⇒21⋮4n−1

Mà 4n - 1 chia 4 dư 3; 4n114n−1≥−1 do nNn∈N

4n1{1;3;7}⇒4n−1∈{−1;3;7}

4n{0;4;8}⇒4n∈{0;4;8}

n{0;1;2}

24 tháng 12 2017

4n+ 3\(⋮\) 2n+ 1.

Ta có: 2n+ 1\(⋮\) 2n+ 1.

=> 2( 2n+ 1)\(⋮\) 2n+ 1.

=> 4n+ 2\(⋮\) 2n+ 1.

Mà 4n+ 3\(⋮\) 2n+ 1.

=>( 4n+ 3)-( 4n+ 2)\(⋮\) 2n+ 1.

=> 4n+ 3- 4n- 2\(⋮\) 2n+ 1.

=> 1\(⋮\) 2n+ 1.

=> n= 1.

Vậy n= 1.

24 tháng 12 2017

4n+3 chia hết cho2n+1

=>2.(2n+1)/2n+1

=>1/2n+1(vì 2.(2n+1))

=>2n+1 thuộc Ư (1)=1

2n+1=1

2n    =1-1

2n=0

n=0chia2=0

vậy n=0

mình kí hiệu" /"chia hết nhé

DD
8 tháng 10 2021

Câu 1: 

\(2n+1=2n-2+3=2\left(n-1\right)+3⋮\left(n-1\right)\Leftrightarrow3⋮\left(n-1\right)\)

mà \(n\)là số nguyên nên \(n-1\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\Leftrightarrow n\in\left\{-2,0,2,4\right\}\).

Câu 2: 

\(4n-5=4n-2-3=2\left(2n-1\right)-3⋮\left(2n-1\right)\Leftrightarrow3⋮\left(2n-1\right)\)

mà \(n\)là số nguyên nên \(2n-1\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\Leftrightarrow n\in\left\{-1,0,1,2\right\}\).

C1:

2n+1⋮n+1

=> 2(n+1)-1⋮n+1

=> -1⋮n+1( vi 2(n+1)⋮n+1)

=> n+1∈U(-1)=(1,-1)

=>n=0,-2

C2:

Ta có: 4n-5 chia hết cho 2n-1

=>4n-2-3 chia hết cho 2n-1

=>2.(2n-1)-3 chia hết cho 2n-1

=>3 chia hết cho 2n-1

=>2n-1=Ư(3)=(-1,-3,1,3)

=>2n=(0,-2,2,4)

=>n=(0,-1,1,2)

Vậy n=0,-1,1,2

11 tháng 10 2015

(4n+3) chia hết cho (2n-1)

Ta có:

(2n-1) chia hết cho (2n-1)

(=)2(2n-1) chia hết cho (2n-1)

4n-2 chia hết cho (2n-1)

Lại có: (4n-3) chia hết cho (2n-1)

[4n-2+(2+3)] chia hết cho (2n-1)

[4n-2+5] chia hết cho (2n-1)

Vì(4n-2) chia hết cho(2n-1)

=>5 chia hết cho(2n-1)

=>(2n-1) thuộc {1;5}

Ta có bảng:

2n-115
n13

Thử lai; Đúng

Vậy n thuộc {1;3}

25 tháng 1 2018

Bài 1 :

a) Ta có :

\(4n-7=4n+12-19=4.\left(n+3\right)-19\)

Ta thấy \(4.\left(n+3\right)⋮n+3\Rightarrow\left(-19\right)⋮n+3\Rightarrow\left(n+3\right)\inƯ\left(-19\right)\)

\(Ư\left(-19\right)=\left\{1;-1;19;-19\right\}\)

Do đó :

\(n+3=1\Rightarrow n=1-3=-2\)

\(n+3=-1\Rightarrow n=-1-3=-4\)

\(n+3=19\Rightarrow n=19-3=16\)

\(n+3=-19\Rightarrow n=-19-3=-22\)

Vậy \(n\in\left\{-2;-4;16;-22\right\}\)

25 tháng 1 2018

BÀI 2:

a  chia  8  dư   7    \(\Rightarrow\)\(a-7\)\(⋮\)\(8\)\(\Rightarrow\)\(a-7+128\)\(⋮\)\(8\)\(\Rightarrow\)\(a+121\)\(⋮\)\(8\)

a  chia  125  dư  4    \(\Rightarrow\)\(a-4\)\(⋮\)\(125\)\(\Rightarrow\)\(a-4+125\)\(⋮\)\(125\)\(\Rightarrow\)\(a+121\) \(⋮\)\(125\)

suy ra:   \(a+121\)\(\in BC\left(8;125\right)=B\left(1024\right)=\left\{0;1024;2048;3072;...\right\}\)

\(\Rightarrow\)\(a\)\(\in\left\{903;1927;....\right\}\)

mà  \(100< a< 1000\)

\(\Rightarrow\)\(a=903\)