Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có: 2n+9 chia hết n+3
<=>(2n+9)-2(n+3) chia hết n+3
<=>(2n+9)-(2n+6) chia hết n+3
<=>3 chia hết n+3
<=>n+3 thuộc {1;3}
<=>n=0
Vậy n = 0
b) Ta có 3n-1 chia hết cho 3-2n
=> 6n-2 chia hết cho 3-2n
=> 3(3-2n)-11 chia hết cho 3-2n
=> 11 chia hết cho 3-2n
=> 3-2n là ước của 11 và n là số tự nhiên => 3-2n thuộc {1;11}
• 3-2n=1 => n=1
• 3-2n=11=> n ko là số tự nhiên
Vậy n=1
c) (15 - 4n) chia hết cho n
=> 15 chia hết cho n
=> n ∈ Ư(15) = {-15; -5; -3; -1; 1; 3; 5; 15}
mà n ∈ N và n < 4
=> n = {1; 3}
d) n=7 vì (n+13)chia hết cho (n-5) và n lớn hơn 5
e) 15-2n = 13+ (2-2n) = 13+2(1-n) : n-1 =
13n−1−213n-1-2
=> n-1 là ước dương của 13
=> n-1 = 13 hoặc n-1 = 1 hoặc n = -1 hoặc n=-13
=> n=14 hoặc n= 2 hoặc n=0 howjc n=-12
Mà n thuộc N và n<8 => n=0 hoặc n=2
g)
6n+9⋮4n−16n+9⋮4n−1
⇒2.(6n+9)⋮4n−1⇒2.(6n+9)⋮4n−1
⇒12n+18⋮4n−1⇒12n+18⋮4n−1
⇒12n−3+21⋮4n−1⇒12n−3+21⋮4n−1
⇒3.(4n−1)+21⋮4n−1⇒3.(4n−1)+21⋮4n−1
Vì 3.(4n−1)⋮4n−1⇒21⋮4n−13.(4n−1)⋮4n−1⇒21⋮4n−1
Mà 4n - 1 chia 4 dư 3; 4n−1≥−14n−1≥−1 do n∈Nn∈N
⇒4n−1∈{−1;3;7}⇒4n−1∈{−1;3;7}
⇒4n∈{0;4;8}⇒4n∈{0;4;8}
⇒n∈{0;1;2}
1)3n-1⋮n-3
=>3n-1-8+8⋮n-3
=>3n-9+8⋮n-3
=>3(n-3)+8⋮n-3
=>8⋮n-3(do 3(n-3)⋮n-3)
=>n-3∈Ư(8)=>n-3∈{1,2,4,8}
+)n-3=1=>n=1+3=4
+)n-3=2=>n=2+3=5
+)n-3=4=>n=4+3=7
+)n-3=8=>n=8+3=11
Vậyn∈{4,5,7,11}
a, ta có 3n-1=3(n-3)+8 chia hết cho n-3 khi n-3 là ước của 8 hay \(n-3\in\left\{\pm1,\pm2,\pm4,\pm8\right\}\Rightarrow n\in\left\{1,2,4,5,7,11\right\}\)
b, ta có 4n+1=2(2n-1)+3 chia hết cho 2n-1 khi 2n-1 là ước của 3 hay \(2n-1\in\left\{\pm1,\pm3\right\}\Rightarrow n\in\left\{0,1,2\right\}\)
c, ta có với n=0 thì thỏa mãn
với n khác 0 thì 2 không chia hết cho 2n+1 ta được 10n+6 chia hết cho 2n+1. ta có 10n+6=5(2n+1)+3 chia hết cho 2n+1 khi 2n+1 là ước của 3 hay \(2n+1\in\left\{\pm3,\pm1\right\}\Rightarrow n\in\left\{0,1\right\}\)
a; (2n + 1) ⋮ (6 -n)
[-2.(6 - n) + 13] ⋮ (6 - n)
13 ⋮ (6 - n)
(6 - n) ϵ Ư(13) = {-13; -1; 1; 13}
Lập bảng ta có:
6 - n | -13 | -1 | 1 | 13 |
n | 19 | 7 | 5 | -7 |
n ϵ Z | tm | tm | tm | tm |
Theo bảng trên ta có: n ϵ {19; 7; 5; -7}
Vậy các giá trị nguyên của n thỏa mãn đề bài là:
n ϵ {19; 7; 5; -7}
b; 3n ⋮ (5 - 2n)
6n ⋮ (5 - 2n)
[15 - 3(5 - 2n)] ⋮ (5 - 2n)
15 ⋮ (5 -2n)
(5 - 2n) ϵ Ư(15) = {-15; -1; 1; 15}
Lập bảng ta có:
5 - 2n | -15 | -1 | 1 | 15 |
n | 10 | 3 | 2 | -5 |
n ϵ Z | tm | tm | tm | tm |
Theo bảng trên ta có: n ϵ {10; 3; 2; -5}
Vậy các giá trị nguyên n thỏa mãn đề bài là:
n ϵ {-5; 2; 3; 10}
\(\frac{4n+3}{2n+1}=\frac{2n+1+2n+2}{2n+1}=\frac{2n+1}{2n+1}+\frac{2n+2}{2n+1}=1+\frac{2n+1+1}{2n+1}=1+\frac{2n+1}{2n+1}+\frac{1}{2n+1}=1+1+\frac{1}{2n+1}\)
Để (4n + 3) chia hết cho (2n+1) thì \(\frac{1}{2n+1}\) phải là số nguyên
\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{1;-1\right\}\)
\(2n+1=1\Rightarrow n=0\)
\(2n+1=-1\Rightarrow n=-1\) (loại)
Vậy n = 0
4n+3 ⋮ 2n+1
=> [4n+3 - 2(2n+1)] ⋮ 2n+1
=> [(4n+3) - (4n+2)] ⋮ 2n+1
=> 1 ⋮ 2n+1
=> 2n+1 \(\in\) Ư(1) = {1}
=> n = {0}
(4n+3) chia hết cho (2n-1)
Ta có:
(2n-1) chia hết cho (2n-1)
(=)2(2n-1) chia hết cho (2n-1)
4n-2 chia hết cho (2n-1)
Lại có: (4n-3) chia hết cho (2n-1)
[4n-2+(2+3)] chia hết cho (2n-1)
[4n-2+5] chia hết cho (2n-1)
Vì(4n-2) chia hết cho(2n-1)
=>5 chia hết cho(2n-1)
=>(2n-1) thuộc {1;5}
Ta có bảng:
Thử lai; Đúng
Vậy n thuộc {1;3}