tìm x biết:
(x^2+2x+3)(x^2+x-12)=0
mọi người cho mình câu trả lời hoặc gợi ý nhé:3 mình cảm ơn ạa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)2x^2+3(x-1)(x+1)=5x(x+1)`
`<=>2x^2+3x^2-3=5x^2+5x`
`<=>5x=-3`
`<=>x=-3/5`
__________________________________________
`b)(x-3)^3+3-x=0` nhỉ?
`<=>(x-3)^3-(x-3)=0`
`<=>(x-3)(x^2-1)=0`
`<=>[(x=3),(x^2=1<=>x=+-1):}`
__________________________________________
`c)5x(x-2000)-x+2000=0`
`<=>5x(x-2000)-(x-2000)=0`
`<=>(x-2000)(5x-1)=0`
`<=>[(x=2000),(x=1/5):}`
__________________________________________
`d)3(2x-3)+2(2-x)=-3`
`<=>6x-9+4-2x=-3`
`<=>4x=2`
`<=>x=1/2`
__________________________________________
`e)x+6x^2=0`
`<=>x(1+6x)=0`
`<=>[(x=0),(x=-1/6):}`
a) \(\left(x+2\right)^2=4\left(2x-1\right)^2\)
\(\left(x+2\right)^2-4\left(2x-1\right)^2=0\)
\(\left(x+2\right)^2-\left[2\left(2x-1\right)\right]^2=0\)
\(\left(x+2\right)^2-\left(4x-2\right)^2=0\)
\(\left(x+2-4x+2\right)\left(x+2+4x-2\right)=0\)
\(6x\left(-3x+4\right)=0\)
\(\Rightarrow6x=0\) hoặc \(-3x+4=0\)
*) \(6x=0\)
\(x=0\)
*) \(-3x+4=0\)
\(3x=4\)
\(x=\dfrac{4}{3}\)
Vậy \(x=0;x=\dfrac{4}{3}\)
b) \(4x\left(x-2019\right)-x+2019=0\)
\(4x\left(x-2019\right)-\left(x-2019\right)=0\)
\(\left(x-2019\right)\left(4x-1\right)=0\)
\(\Rightarrow x-2019=0\) hoặc \(4x-1=0\)
*) \(x-2019=0\)
\(x=2019\)
*) \(4x-1=0\)
\(4x=1\)
\(x=\dfrac{1}{4}\)
Vậy \(x=\dfrac{1}{4};x=2019\)
Ta có: \(x\cdot62+x\cdot21=1909\)
\(\Leftrightarrow x\cdot83=1909\)
hay x=23
62x + 21x = 1909
<=> 83x = 1909
<=> x = \(\dfrac{1909}{83}\) = 23
\(\frac{2}{3}-\frac{1}{3}\left(x-\frac{3}{2}\right)-\frac{1}{2}\left(2x+1\right)=5\)
=> \(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)
=> \(\left(\frac{2}{3}+\frac{1}{2}-\frac{1}{2}\right)+\left(-\frac{1}{3}x-x\right)=5\)
=> \(\frac{2}{3}-\frac{4}{3}x=5\)
=> \(\frac{4}{3}x=\frac{2}{3}-5=-\frac{13}{3}\)
=> \(x=-\frac{13}{4}\)
\(\left(2x-3\right)^4-\left(2x-3\right)^2=0\)
\(\Rightarrow\left(2x-3\right)^2\left[\left(2x-3\right)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(2x-3\right)^2=0\\\left(2x-3\right)^2=1\end{cases}}\)
Từ đó tìm được \(x=\frac{3}{2},x=2,x=1\)
(2x-3)4-(2x-3)2=0
suy ra có 2 TH
TH1 (2x-3)4=0
(2x-3)4=04
2x-3=0
2x=0+3
2x=3
x=3:2
x=1,5
tH 2
(2X-3)2=0
(2X-3)2=02
2X-3=0
2x=0+3
2x=3
x=3:2
x=1.5
vậy x \(\in\){1,5}
`(x^{2}+2x+3)(x^{2}+x-12)=0(***)`
Vì : `x^{2}+2x+3=(x+1)^{2}+2\ge2>0` với mọi `x`
Hay `x^{2}+2x+3\ne 0` với mọi `x`
Do đó `(***)` xảy ra `<=>x^{2}+x-12=0`
`<=>(x+4)(x-3)=0`
`=>x=-4` hoặc `x=3`
Vậy `S={-4;3}`