Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có: \(2x+\left|x-3\right|=4\)
\(\Leftrightarrow\left|x-3\right|=4-2x\)
Điều kiện: \(4-2x\ge0\Leftrightarrow2x\le4\Rightarrow x\le2\)
\(PT\Leftrightarrow\orbr{\begin{cases}x-3=4x-2\\x-3=2-4x\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x=-1\\5x=5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{3}\left(ktm\right)\\x=1\left(tm\right)\end{cases}}\)
Vậy x = 1
Bài 2:
a) Ta có: \(A=\left|3x+5\right|+4\ge4\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|3x+5\right|=0\Rightarrow x=-\frac{5}{3}\)
Vậy Min(A) = 4 khi x = -5/3
b) Ta có: \(B=-\left|2x+1\right|+10\le10\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|2x+1\right|=0\Rightarrow x=-\frac{1}{2}\)
Vậy Max(B) = 10 khi x = -1/2
a: =>2x>-6
hay x>-3
e: =>(5-x)/x<0
=>0<x<5
h: \(\Leftrightarrow\dfrac{x+5-x-3}{x+3}< 0\)
\(\Leftrightarrow x+3< 0\)
hay x<-3
g: \(\Leftrightarrow\dfrac{2x+7}{x+4}>0\)
\(\Leftrightarrow\left[{}\begin{matrix}x>-\dfrac{7}{2}\\x< -4\end{matrix}\right.\)
\(\frac{2}{3}-\frac{1}{3}\left(x-\frac{3}{2}\right)-\frac{1}{2}\left(2x+1\right)=5\)
=> \(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)
=> \(\left(\frac{2}{3}+\frac{1}{2}-\frac{1}{2}\right)+\left(-\frac{1}{3}x-x\right)=5\)
=> \(\frac{2}{3}-\frac{4}{3}x=5\)
=> \(\frac{4}{3}x=\frac{2}{3}-5=-\frac{13}{3}\)
=> \(x=-\frac{13}{4}\)
C với D mình làm sau vì nó phức tạp hơn ... E với F trước nhé
E = | 3x + 1 | + 2| x - y | + 1
\(\hept{\begin{cases}\left|3x+1\right|\ge0\\2\left|x-y\right|\ge0\end{cases}\forall}x,y\Rightarrow\left|3x+1\right|+2\left|x-y\right|+1\ge1\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}3x+1=0\\x-y=0\end{cases}}\Leftrightarrow x=y=-\frac{1}{3}\)
=> MinE = 1 <=> x = y = -1/3
F = 5| x - 1 | + 1/2| 2x + y | + 2020
\(\hept{\begin{cases}5\left|x-1\right|\ge0\\\frac{1}{2}\left|2x+y\right|\ge0\end{cases}\forall}x,y\Rightarrow5\left|x-1\right|+\frac{1}{2}\left|2x+y\right|+2020\ge0\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\2x+y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
=> MinF = 2020 <=> x = 1 ; y = -2
C = 2| x - 1 | + | 2x + 3 | - 2020
= | 2x - 2 | + | 2x + 3 | - 2020
= | 2x - 2 | + | -( 2x + 3 ) | - 2020
= | 2x - 2 | + | -2x - 3 | - 2020
Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :
C = | 2x - 2 | + | -2x - 3 | - 2020 ≥ | 2x - 2 - 2x - 3 | - 2020 = | -5 | - 2020 = 5 - 2020 = -2015
Dấu "=" xảy ra khi ab ≥ 0
=> ( 2x - 2 )( -2x - 3 ) ≥ 0
Xét hai trường hợp :
1. \(\hept{\begin{cases}2x-2\ge0\\-2x-3\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\ge2\\-2x\ge3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le-\frac{3}{2}\end{cases}}\)( loại )
2. \(\hept{\begin{cases}2x-2\le0\\-2x-3\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\le2\\-2x\le3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge-\frac{3}{2}\end{cases}}\Leftrightarrow-\frac{3}{2}\le x\le1\)
=> MinC = -2015 <=> \(-\frac{3}{2}\le x\le1\)
D = | 3 - 2x | + 2| 1 - x | + 1/2
= | 3 - 2x | + | 2 - 2x | + 1/2
= | -( 3 - 2x ) | + | 2 - 2x | + 1/2
= | 2x - 3 | + | 2 - 2x | + 1/2
Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :
D = | 2x - 3 | + | 2 - 2x | + 1/2 ≥ | 2x - 3 + 2 - 2x | + 1/2 = | -1 | + 1/2 = 1 + 1/2 = 3/2
Dấu "=" xảy ra khi ab ≥ 0
=> ( 2x - 3 )( 2 - 2x ) ≥ 0
Xét hai trường hợp :
1. \(\hept{\begin{cases}2x-3\ge0\\2-2x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\ge3\\-2x\ge-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{3}{2}\\x\le1\end{cases}}\)( loại )
2. \(\hept{\begin{cases}2x-3\le0\\2-2x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\le3\\-2x\le-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{3}{2}\\x\ge1\end{cases}}\Leftrightarrow1\le x\le\frac{3}{2}\)
=> MinD = 3/2 <=> \(1\le x\le\frac{3}{2}\)