K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2017

Ta có: a+b+c=0 \(\Rightarrow\)-a=b+c

\(\frac{a^2}{a^2-b^2-c^2}=\frac{a^2}{a^2-\left(b+c\right)^2+2bc}=\frac{a^2}{2bc}\left(1\right)\)( vì b+c=-a)

Tương tự: \(\frac{b^2}{b^2-c^2-a^2}=\frac{b^2}{2ac}\left(2\right)\)

                \(\frac{c^2}{c^2-a^2-b^2}=\frac{c^2}{2ab}\left(3\right)\)

Từ 1,2 và 3 suy ra \(A=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{a^3+b^3+c^3}{2abc}\)

Dễ dàng chứng minh với a+b+c=0 thì \(a^3+b^3+c^3=3abc\)( bạn phân tích thành nhân tử sẽ ra, có gì kết bạn với mik)

Do đó \(A=\frac{3}{2}\)

25 tháng 1 2019

1. a + b + c = 0 \(\Rightarrow\)a + b = -c \(\Rightarrow\)( a + b )2 = ( -c )2 \(\Rightarrow\)a2 + b2 - c2 = -2ab

Tương tự : b2 + c2 - a2 = -2bc ; c2 + a2 - b2 = -2ac

Ta có : \(\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}\)

\(=\frac{1}{-2ab}+\frac{1}{-2bc}+\frac{1}{-2ac}=\frac{-1}{2}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

\(=\frac{-1}{2}\left(\frac{a+b+c}{abc}\right)=0\)

2. tương tự

3,4 . có ở dưới, câu hỏi của Quyết Tâm chiến thắng

26 tháng 11 2016

a/ \(a+b+c=0\Leftrightarrow a=-b-c\Leftrightarrow a^2=b^2+c^2+2bc\Leftrightarrow a^2-b^2-c^2=2bc\)

Tương tự : \(b^2-a^2-c^2=2ac\) , \(c^2-a^2-b^2=2ab\)

Suy ra \(A=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{1}{2abc}\left(a^3+b^3+c^3\right)\)

Ta sẽ chứng minh nếu \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\)

Thật vậy : \(a+b=-c\Leftrightarrow\left(a+b\right)^3=-c^3\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)

\(\Leftrightarrow a^3+b^3+c^3=-3ab.\left(-c\right)=3abc\) 

Áp dụng được \(A=\frac{3abc}{2abc}=\frac{3}{2}\)

b/ Tương tự.

12 tháng 4 2019

Có a + b + c = 0

=> a + b = - c

=> (a + b)2 = c2

=> a2 + b2 + 2ab = c2

=> a2 + b2 - c2 = - 2ab

Tương tự, b2 + c2 - a2 = - 2bc và c2 + a2 - b2 = - 2ca

Do đó \(A=\frac{ab}{-2ab}+\frac{bc}{-2bc}+\frac{ca}{-2ca}=-\frac{1}{2}-\frac{1}{2}-\frac{1}{2}=-\frac{3}{2}\)

a+b+c=0=>a+b=-c=>a2+b2+2ab=c2=>a2+b2-c2=-2ab

Tương tự b2+c2-a2=-2bc,c2+a2-b2=-2ac

=>\(A=\frac{-ab}{2ab}+\frac{-bc}{2bc}+\frac{-ca}{2ca}=\frac{-3}{2}\)

5 tháng 12 2016

jkghffffffffffffffffffffffffffffffffffffffffffffffffffff

13 tháng 12 2016

jkghffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff giống bạn đó Nguyễn Thế An

25 tháng 1 2019

1.

a + b + c = 0 \(\Rightarrow\)a = - ( b + c ) \(\Rightarrow\)a2 = [ -( b + c ) ]2 \(\Rightarrow\)a2 = b2 + c2 + 2bc

Tương tự : b2 = a2 + c2 + 2ac ; c2 = a2 + b2 + 2ab

a + b + c = 0 \(\Rightarrow\)a3 + b3 + c3 = 3abc  ( chứng minh )

Ta có : \(A=\frac{a^2}{b^2+c^2+2bc-b^2-c^2}+\frac{b^2}{a^2+c^2+2ac-a^2-c^2}+\frac{c^2}{a^2+b^2+2ab-a^2-b^2}\)

\(A=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}\)

\(A=\frac{a^3+b^3+c^3}{2abc}=\frac{3abc}{2abc}=\frac{3}{2}\)

2. quy đồng mà giải

26 tháng 1 2019

tại sao a+b+c=0 lại suy ra đc \(a^3+b^3+c^3=3abc\)

6 tháng 2 2016

Nhận xét: \(\text{ *)}\) Nếu  \(x+y+z=0\)  thì  \(x^3+y^3+z^3=3xyz\)     

Thật vậy,  từ  \(x+y+z=0\)

Suy ra:  \(x+y=-z\)  \(\left(\text{*}\right)\)

\(\Leftrightarrow\)  \(\left(x+y\right)^3=\left(-z\right)^3\)  

\(\Leftrightarrow\)  \(x^3+3x^2y+3xy^2+y^3=\left(-z\right)^3\)

\(\Leftrightarrow\)  \(x^3+y^3+z^3=-3x^2y-3xy^2\)

\(\Leftrightarrow\)  \(x^3+y^3+z^3=-3xy\left(x+y\right)\)

\(\Leftrightarrow\)  \(x^3+y^3+z^3=3xyz\)  (theo \(\left(\text{*}\right)\)  )

                                                              \(-------------\)

Theo giả thiết, ta có:

\(a+b+c=0\)

\(\Leftrightarrow\)  \(b+c=-a\)

\(\Leftrightarrow\)  \(\left(b+c\right)^2=\left(-a\right)^2\)

\(\Leftrightarrow\)  \(b^2+2bc+c^2=a^2\)

\(\Leftrightarrow\)  \(2bc=a^2-b^2-c^2\)

Tương tự, ta cũng có  \(2ac=b^2-a^2-c^2\)  \(;\) \(2ab=c^2-a^2-b^2\)

Mặt khác,  vì \(a+b+c=0\)  nên  \(a^3+b^3+c^3=3abc\)  (theo nhận xét trên)

Do đó,  \(A=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{a^3}{2abc}+\frac{b^3}{2abc}+\frac{c^3}{2abc}=\frac{a^3+b^3+c^3}{2abc}=\frac{3abc}{2abc}=\frac{3}{2}\)  (do  \(abc\ne0\)  

6 tháng 2 2016

tu a + b + c = 0 suy ra a= - (b+c) suy ra a^2 = (b+c)^2=b^2 +c^2 + 2bc                                                                                                    suy ra a^2 - b^2 - c^2 =2bc . tuong tu ta cung co b^2-a^2-c^2=2ac ; c^2- a^2 -b^2=2ab                                                                          do do A = a^2/2bc + b^2/2ac+c^2/2ab =a^3/2abc+b^3/2abc +c^3/2abc                                                                                                           lai co a+b+c=o nen a+b=-c suyra a^3+b^3+3ab(a+b)= -c^3 do do a^3 +b^3 +c^3=3abc                                                                     vay A=3abc/2abc=3/2 (abc khac 0 : a+b=c=o)

26 tháng 9 2017

Umk !!! giúp liền nàk

\(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)nên

\(\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-a^2-b^2}\)

\(=\frac{a^2}{\left(a-b\right)\left(a+b\right)-c^2}+\frac{b^2}{\left(b-c\right)\left(b+c\right)-a^2}+\frac{c^2}{\left(c-a\right)\left(c+a\right)-b^2}\)

\(=\frac{a^2}{-c\left(a-b\right)-c^2}+\frac{b^2}{-a\left(b-c\right)-a^2}+\frac{c^2}{-b\left(c-a\right)-b^2}\)

\(=\frac{a^2}{-ac+bc-c^2}+\frac{b^2}{-ab+ac-a^2}+\frac{c^2}{-bc+ab-b^2}\)

\(=\frac{a^2}{-c\left(a+c\right)+bc}+\frac{b^2}{-a\left(a+b\right)+ac}+\frac{c^2}{-b\left(b+c\right)+ab}\)

\(=\frac{a^2}{-c\left(-b\right)+bc}+\frac{b^2}{\left(-a\right)\left(-c\right)+ac}+\frac{c^2}{-b\left(-a\right)+ab}\)

\(=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{a^3+b^3+c^3}{2abc}\)

Mà a + b +c = 0 nên \(a^3+b^3+c^3=3abc\) (tự chứng minh)

Do đó \(\frac{a^3+b^3+c^3}{2abc}=\frac{3abc}{2abc}=\frac{3}{2}\)

Vậy \(\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-a^2-b^2}=\frac{3}{2}\)

26 tháng 9 2017

trả ơn này

Vì a + b + c = 0

\(\Rightarrow\)a2  = b+ c2 + 2bc \(\Rightarrow\) a- b- c2 = 2bc

\(\Rightarrow\)b = a+ c+ 2bc\(\Rightarrow\) b2 - a2 - c= 2bc

\(\Rightarrow\) c2 = a+ c+2ab\(\Rightarrow\)c - b- a2 = 2ab

còn lại tự làm nhé