Cho a+b=1. Tính
M=a6+2a2b2+b6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)a^6+b^6`
`=a^6+2a^3b^3+b^6-2a^2b^3`
`=(a^3+b^3)^2-2(ab)^3`
`=[(a+b)(a^2-ab+b^2)])^2-2.(-36)^3`
`={10[(a+b)^2-3ab]}^2-2.(-46656)`
`=100.[10^2-3.(-36)]^2+93312`
`=100.(100+108)^2+93312`
`=100.43264+93312`
`=4326300+93312`
`=4419712`
Để khẳng định đáp án `441972` là đúng ta thử lại như sau:
`a+b=10=>b=10-a`
`a.b=-36`
`=>a(10-a)=-36`
`<=>10a-a^2=-36`
`<=>a^2-10a-36=0`
`<=>a^2-10a+25-61=0`
`<=>(a-5)^2-61=0`
`<=>(a-5)^2=61`
`<=>` \(\left[ \begin{array}{l}a=5-\sqrt{61}\\a=5+\sqrt{61}\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}b=5+\sqrt{61}\\b=5-\sqrt{61}\end{array} \right.\)
`=>a^6+b^6=(5-sqrt{61})^2+(5+\sqrt{61})^2=4419712`(đoạn này bạn có thể bấm máy tính để check lại)
a. Do vai trò của a;b;c là như nhau, không mất tính tổng quát giả sử \(a\ge b\ge c\)
BĐT tương đương:
\(\left(a-b\right)\left[a^2-ac+bc-b^2\right]+c\left(a-b\right)\left(b-c\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left[\left(a-b\right)\left(a+b\right)-c\left(a-b\right)\right]+c\left(a-b\right)\left(b-c\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b-c\right)+c\left(a-b\right)\left(b-c\right)\ge0\) (đúng)
b.
Ta có: \(a^6+a^6+a^6+a^6+a^6+b^6\ge6\sqrt[6]{a^{30}b^6}=6a^5b\)
Tương tự: \(5b^6+c^6\ge6b^5c\) ; \(5c^6+a^6\ge6c^5a\)
Cộng vế với vế:
\(6\left(a^6+b^6+c^6\right)\ge6\left(a^5b+b^5c+c^5a\right)\)
\(VT=\left(a^4+b^4+c^4-2a^2b^2-2a^2c^2+2b^2c^2\right)-4b^2c^2\)
\(=\left(a^2-b^2-c^2\right)^2-\left(2bc\right)^2\)
\(=\left(a^2-b^2-c^2-2bc\right)\left(a^2-b^2-c^2+2bc\right)\)
\(=\left[a^2-\left(b+c\right)^2\right]\left[a^2-\left(b-c\right)^2\right]\)
\(=\left(a-b-c\right)\left(a+b+c\right)\left(a+c-b\right)\left(a+b-c\right)\)
Do a;b;c là độ dài 3 cạnh của tam giác, ta có:
\(\left\{{}\begin{matrix}a-b-c< 0\\a+b+c>0\\a+c-b>0\\a+b-c>0\end{matrix}\right.\) \(\Rightarrow VT< 0\) (đpcm)
\(a^6+a^4+a^2b^2+b^4-b^6\\ =a^6-b^6+a^4+a^2b^2+b^4\\ =\left(a^6-b^6\right)+\left(a^4+a^2b^2+b^4\right)\\ =\left[\left(a^2\right)^3-\left(b^2\right)^3\right]+\left(a^4+a^2b^2+b^4\right)\\ =\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)+\left(a^2+a^2b^2+b^4\right)\\ =\left(a^2-b^2+1\right)\left(a^4+a^2b^2+b^4\right)\\ =\left(a^2-b^2+1\right)\left(a^4+2a^2b^2+b^4-a^2b^2\right)\\ =\left(a^2-b^2+1\right)\left[\left(a^2+b^2\right)^2-\left(ab\right)^2\right]\\ =\left(a^2-b^2+1\right)\left(a^2+b^2-ab\right)\left(a^2+b^2+ab\right)\)
a) Kết quả ( a – b ) 2 .
Gợi ý a 4 – 2 a 2 b 2 + b 4 = ( a 2 – b 2 ) 2 = ( a – b ) 2 ( a + b ) 2 .
b) Kết quả - 8 ( a – 2 b ) 2 .
Đề bài sai, phản ví dụ: \(a=3;b=1;c=1\) thì \(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2=45>0\)
https://olm.vn/hoi-dap/detail/108617134952.html
Bạn xem ở đây phần phân tích đa thức thành nhân tử nhé, sau đây là phần tiếp theo