Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hơn 1 năm rồi không ai làm :'(
a) Áp dụng bđt Cauchy ta có :
\(a+b\ge2\sqrt{ab}\)(1)
\(b+c\ge2\sqrt{bc}\)(2)
\(c+a\ge2\sqrt{ca}\)(3)
Nhân (1), (2), (3) theo vế
=> \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{a^2b^2c^2}=8\sqrt{\left(abc\right)^2}=8\left|abc\right|=8abc\)
=> đpcm
Dấu "=" xảy ra <=> a=b=c
Ta có:
\(\left(1-a\right)\left(1-c\right)\left(1-b\right)4\le\left(\dfrac{2-a-c}{2}\right)^2\left(1-b\right)4=\left(2b+a+c\right)\left(2b+a+c\right)\left(1-b\right)\)
\(\le\left(a+2b+c\right)\left(\dfrac{a+b+c+1}{2}\right)^2=a+2b+c\)
Xét \(\dfrac{a}{a^2+1}+\dfrac{3\left(a-2\right)}{25}-\dfrac{2}{5}=\dfrac{a}{a^2+1}+\dfrac{3a-16}{25}=\dfrac{\left(3a-4\right)\left(a-2\right)^2}{25\left(a^2+1\right)}\ge0\)
\(\Rightarrow\dfrac{a}{a^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(a-2\right)}{25}\)
CMTT \(\Rightarrow\left\{{}\begin{matrix}\dfrac{b}{b^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(b-2\right)}{25}\\\dfrac{c}{c^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(c-2\right)}{25}\end{matrix}\right.\)
Cộng vế theo vế:
\(\Rightarrow VT\ge\dfrac{2}{5}+\dfrac{2}{5}+\dfrac{2}{5}-\dfrac{3\left(a-2\right)+3\left(b-2\right)+3\left(c-2\right)}{25}\ge\dfrac{6}{5}-\dfrac{3\left(a+b+c-6\right)}{25}=\dfrac{6}{5}\)
Dấu \("="\Leftrightarrow a=b=c=2\)
Câu a : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
\(\Leftrightarrow\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)\ge\frac{9}{2}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{9}{2}\)
\(VT=\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{\left(a+b+c\right).9}{2\left(a+b+c\right)}=\frac{9}{2}\) (đpcm)
Dấu "\("="\) xảy ra khi \(a=b=c\)
Câu b : \(VT=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\left(đpcm\right)\)
Dấu = xảy ra khi a=b=c
a)Áp dụng BĐT Cauchy-Schwarz dạng Engel:
\(VT=\left(\frac{a^4}{a}+\frac{b^4}{b}+\frac{c^4}{c}\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\ge\frac{9\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}\ge\frac{9\left[\frac{\left(a+b+c\right)^2}{3}\right]^2}{\left(a+b+c\right)^2}=\left(a+b+c\right)^2\)
Đẳng thức xảy ra khi \(a=b=c\)
b) \(VT-VP=\left(a+b\right)\left(a-b\right)^2+\left(b+c\right)\left(b-c\right)^2+\left(c+a\right)\left(c-a\right)^2\ge0\)
Đẳng thức xảy ra khi \(a=b=c\)
c) Theo câu b và BĐT Cauchy-Schwarz:
\(\Rightarrow3.3\left(a^3+b^3+c^3\right)\ge3\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
\(\ge3\left(a+b+c\right)\left[\frac{\left(a+b+c\right)^2}{3}\right]=\left(a+b+c\right)^3\)
Đẳng thức xảy ra khi \(a=b=c\)
4.
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)}{ab+bc+ca}\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge\frac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)
Dấu "=" xảy ra khi \(a=b=c\)
5.
\(\frac{a}{bc}+\frac{b}{ca}\ge2\sqrt{\frac{ab}{bc.ca}}=\frac{2}{c}\) ; \(\frac{a}{bc}+\frac{c}{ab}\ge\frac{2}{b}\) ; \(\frac{b}{ca}+\frac{c}{ab}\ge\frac{2}{a}\)
Cộng vế với vế:
\(2\left(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
1.
Áp dụng BĐT \(x^2+y^2+z^2\ge xy+yz+zx\)
\(\Rightarrow\left(\sqrt{ab}\right)^2+\left(\sqrt{bc}\right)^2+\left(\sqrt{ca}\right)^2\ge\sqrt{ab}.\sqrt{bc}+\sqrt{ab}.\sqrt{ac}+\sqrt{bc}.\sqrt{ac}\)
\(\Rightarrow ab+bc+ca\ge\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
2.
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt[]{\frac{ab.bc}{ca}}=2b\) ; \(\frac{ab}{c}+\frac{ac}{b}\ge2a\) ; \(\frac{bc}{a}+\frac{ac}{b}\ge2c\)
Cộng vế với vế:
\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\)
3.
Từ câu b, thay \(c=1\) ta được:
\(ab+\frac{b}{a}+\frac{a}{b}\ge a+b+1\)
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2b^2}{b^2c^2}}\ge\frac{2a}{c}\) ; \(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge\frac{2c}{b}\) ; \(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\)
Cộng vế với vế ta có đpcm
Dấu "=" xảy ra khi \(a=b=c\)
2. \(\frac{bc}{a}+\frac{ac}{b}\ge2\sqrt{\frac{bc.ac}{ab}}=2c\) ; \(\frac{ac}{b}+\frac{ab}{c}\ge2a\) ; \(\frac{bc}{a}+\frac{ab}{c}\ge2b\)
Cộng vế với vế ta có đpcm
Dấu "=" xảy ra khi \(a=b=c\)
a. Do vai trò của a;b;c là như nhau, không mất tính tổng quát giả sử \(a\ge b\ge c\)
BĐT tương đương:
\(\left(a-b\right)\left[a^2-ac+bc-b^2\right]+c\left(a-b\right)\left(b-c\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left[\left(a-b\right)\left(a+b\right)-c\left(a-b\right)\right]+c\left(a-b\right)\left(b-c\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b-c\right)+c\left(a-b\right)\left(b-c\right)\ge0\) (đúng)
b.
Ta có: \(a^6+a^6+a^6+a^6+a^6+b^6\ge6\sqrt[6]{a^{30}b^6}=6a^5b\)
Tương tự: \(5b^6+c^6\ge6b^5c\) ; \(5c^6+a^6\ge6c^5a\)
Cộng vế với vế:
\(6\left(a^6+b^6+c^6\right)\ge6\left(a^5b+b^5c+c^5a\right)\)