Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=2a^2b^2+2a^2c^2+2b^2c^2-a^4-b^4-c^4\)
\(A=-\left(a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2-2\left(ca\right)^2\right)\)
\(A=-\left(a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2+2\left(ca\right)^2-4\left(ca\right)^2\right)\)
Áp dụng hàng đẳng thức \(\left(a^2-b^2+c^2\right)=a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2+2\left(ca\right)^2\):
\(A=-\left[\left(a^2-b^2+c^2\right)^2-4\left(ca\right)^2\right]\)
\(A=-\left(a^2-b^2+c^2-2ca\right)\left(a^2-b^2+c^2+2ca\right)\)
2222222222222a+257222222222222222222222222222222222222222222222222222222222222222222222222222222222222222a=?
\(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2a^2c^2=\left(a^4-2a^2b^2+b^4\right)+2\left(a^2-b^2\right)c^2+c^4-4a^2c^2=\left(a^2-b^2+c^2\right)^2-\left(2ac\right)^2=\left(a^2-b^2+c^2-2ac\right)\left(a^2-b^2+c^2+2ac\right)\)
\(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2a^2c^2\)
\(=\left(a^4-2a^2b^2+b^4\right)+2\left(a^2-b^2\right)c^2+c^4-4a^2c^2\)
\(=\left(a^2-b^2+c^2\right)^2-\left(2ac\right)^2\)
\(=\left(a^2-2ac+c^2-b^2\right)\left(a^2+2ac+c^2-b^2\right)\)
\(=\left(a-c-b\right)\left(a-c+b\right)\left(a+c-b\right)\left(a+c+b\right)\)
Đề bài sai, phản ví dụ: \(a=3;b=1;c=1\) thì \(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2=45>0\)
https://olm.vn/hoi-dap/detail/108617134952.html
Bạn xem ở đây phần phân tích đa thức thành nhân tử nhé, sau đây là phần tiếp theo
1: =(a+b)^3+c^3-3ab(a+b)-3acb
=(a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)
=(a+b+c)(a^2+2ab+b^2-ac-bc+c^2-3ab)
=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)
theo bài ta có:
a + b + c = 0
=> a = -(b + c)
=> a2 = [-(b + c)]2
=> a2 = b2 + 2bc + c2
=> a2 - b2 - c2 = 2bc
=> ( a2 - b2 - c2)2 = (2bc)2
=> a4 + b4 + c4 - 2a2c2 + 2b2c2 - 2a2c2 = 4b2c2
=> a4 + b4 + c4 = 2a2c2 + 2b2c2 + 2a2c2
=> 2(a4 + b4 + c4) = a4 + b4 + c4 + 2a2c2 + 2b2c2 + 2a2c2
=> 2(a4 + b4 + c4) = (a2 + b2 + c2)2
=> 2(a4 + b4 + c4) = 1
=> a4 + b4 + c4 = \(\dfrac{1}{2}\)
Theo nguyên lý Dirichlet, trong 3 số a;b;c luôn có 2 số cùng phía so với 0, không mất tính tổng quát, giả sử đó là a và b
\(\Rightarrow ab\ge0\)
Mặt khác do \(c\le1\Rightarrow\left\{{}\begin{matrix}1-c^2\ge0\\1-c\ge0\end{matrix}\right.\)
\(\Rightarrow2ab\left(1-c\right)+1-c^2\ge0\)
\(\Leftrightarrow2ab+1\ge2abc+c^2\)
\(\Leftrightarrow a^2b^2+2ab+1\ge a^2b^2+2abc+c^2\)
\(\Leftrightarrow\left(ab+c\right)^2\le\left(1+ab\right)^2\le\left(1+a^2\right)\left(1+b^2\right)\) (1)
Từ giả thiết:
\(a^2+b^2+c^2\le1+2abc\Leftrightarrow a^2b^2-2abc+c^2\le1-a^2-b^2+a^2b^2\)
\(\Leftrightarrow\left(ab-c\right)^2\le\left(1-a^2\right)\left(1-b^2\right)\) (2)
Nhân vế với vế (1) và (2):
\(\left(ab+c\right)^2\left(ab-c\right)^2\le\left(1+a^2\right)\left(1+b^2\right)\left(1-a^2\right)\left(1-b^2\right)\)
\(\Leftrightarrow1+2a^2b^2c^2\ge a^4+b^4+c^4\) (đpcm)
Dấu "=" xảy ra khi 1 số bằng 1 và 2 số bằng nhau
a) Kết quả ( a – b ) 2 .
Gợi ý a 4 – 2 a 2 b 2 + b 4 = ( a 2 – b 2 ) 2 = ( a – b ) 2 ( a + b ) 2 .
b) Kết quả - 8 ( a – 2 b ) 2 .