K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NN
Chứng minh rằng nếu a, b, c là ba cạnh của một tam giác thì 2a2b2 + 2b2c2 + 2a2c2 - a4 - b4 - c4 > 0
0
8 tháng 4 2017
oh my dog toán lớp 8 đây á
mik làm đc hình như mỗi câu a thôi thì phải
Lời giải:
Xét:
\(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2a^2c^2\)
\(=(a^4+b^4+2a^2b^2)+c^4-2c^2(b^2+a^2)-4a^2b^2\)
\(=(a^2+b^2)^2+(c^2)^2-2c^2(a^2+b^2)-(2ab)^2\)
\(=(a^2+b^2-c^2)^2-(2ab)^2=(a^2+b^2-c^2-2ab)(a^2+b^2-c^2+2ab)\)
\(=[(a-b)^2-c^2][(a+b)^2-c^2]\)
\(=(a-b-c)(a-b+c)(a+b-c)(a+b+c)\)
\(\Rightarrow 2a^2b^2+2b^2c^2+2a^2c^2-a^4-b^4-c^4=(b+c-a)(a-b+c)(a+b-c)(a+b+c)\)
Vì $a,b,c$ là 3 cạnh tam giác nên $b+c-a,a-b+c,a+b-c>0$ theo BĐT tam giác. Mặt khác hiển nhiên $a+b+c>0$
Do đó:
\(2a^2b^2+2b^2c^2+2a^2c^2-a^4-b^4-c^4=(b+c-a)(a-b+c)(a+b-c)(a+b+c)>0\)
Ta có đpcm.