tìm số nguyên tố p sao cho:
a) p+4;p+8 là số nguyên tố
b)p+4;p+14 là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) +) Nếu p = 3k + 1 (k thuộc N)=> 2p2 + 1 = 2.(3k + 1)2 + 1 = 2.(9k2 + 6k + 1) + 1 = 18k2 + 12k + 2 + 1 = 18k2 + 12k + 3 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)
+) Nếu p = 3k + 2 (k thuộc N) => 2p2 + 1 = 2.(3k + 2)2 + 1 = 2.(9k2 + 12k + 4) + 1 = 18k2 + 24k + 8 + 1 = 18k2 + 24k + 9 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)
Vậy p = 3k, mà p là số nguyên tố => k = 1 => p = 3
a) +) Nếu p = 1 => p + 1 = 2; p + 2 = 3; p + 4 = 5 là số nguyên tố
+) Nếu p > 1 :
p chẵn => p = 2k => p + 2= 2k + 2 chia hết cho 2 => p+ 2 là hợp số => loại
p lẻ => p = 2k + 1 => p + 1 = 2k + 2 chia hết cho 2 => p+1 là hợp số => loại
Vậy p = 1
c) p = 2 => p + 10 = 12 là hợp số => loại
p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn
Nếu p > 3 , p có thể có dạng
+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1
+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2
Vậy p = 3
Bài 1:
Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố
2 + 4 = 6 không là số nguyên tố
Vậy p = 2 không thỏa mãn
Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố
3 + 4 = 7 là số nguyên tố
Vậy p = 3 thỏa mãn
Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2
Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố
Vậy p = 3k + 1 không thỏa mãn
Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố
Vậy p = 3k + 2 không thỏa mãn
Vậy p = 3 thỏa mãn duy nhất.
Bài 2:
Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3
p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3
Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3
Vì thế 4p + 1 phải chia hết cho 3
Mà p > 3 nên 4p + 1 > 3
=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.
a) Với p = 2 thì p + 4; p + 8 không là số nguyên tố.
Với p = 3 thì p + 4; p + 8 là các số nguyên tố.
Nếu p > 3 mà p là số nguyên tố => p = 3k +1 hoặc p = 3k +2 (k ϵ N*)
Ta thấy nếu p = 3k + 1 thì p + 8 = 3k + l + 8 = 3k + 9=> p chia hết cho 3 (loại).
Ta thấy nếu p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 => p chia hết cho 3 (loại).
Vậy ta đã chứng minh được p = 3 là giá trị duy nhất thỏa mãn điều kiện đề bài.
b) Tương tự 21A.
p = 3 là giá trị duy nhất thỏa mãn điều kiện đề bài.
Câu 1:* Nếu p=2 => p+2=2+2=4 là hợp số (trái với đề bài)
* Nếu p=3 => p+2=3+2=5 là số nguyên tố
=> p+4=3+4=7 là số nguyên tố
=> p=3 thỏa mãn đề bài
* Nếu p là số nguyên tố; p>3 => p có dạng 3k+1 hoặc 3k+2 (k ∈ N*)
* Nếu p=3k+1 => p+2=3k+1+2=3k+3=3(k+1)
Vì 3 ⋮ 3 => 3(k+1) ⋮ 3 => p+2 ⋮ 3, mà p+2 là số nguyên tố lớn hơn 3 => p+2 là hợp số (trái với đề bài)
* Nếu p=3k+2 => p+4=3k+2+4=3k+6=3k+3.2=3(k+2)
Vì 3 ⋮ 3 => 3(k+2) ⋮ 3 => p+4 ⋮ 3, mà p+4 là số nguyên tố lớn hơn 3 => p+4 là hợp số (trái với đề bài)
Vậy p=3 thỏa mãn đề bài
Nếu p = 2
=> p + 4 = 6 (loại)
Nếu p = 3
=> p + 4 = 7 (tm)
=> p + 14 = 17 (tm)
Nếu p > 3
=> \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}}\)
Khi p = 3k + 1
=> p + 14 = 3k + 1 + 14 = 3k + 15 = 3(k + 5) \(⋮\)3
=> p + 14 là hợp số (loại)
Khi p = 3k + 2
=> p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) \(⋮\)3 (loại)
=> p + 4 là hợp số (loại)
Vậy p = 3
Có \(a^4+4=a^4+4a^2+4-4a^2\)
\(=\left(a^2+2\right)^2-4a^2=\left(a^2-2a+2\right)\left(a^2+2a+2\right)\)
\(\Rightarrow a^4+4⋮a^2+2a+2;a^4+4⋮a^2-2a+2\)
Mà \(a^4+4\)là số nguyên tố nên có 1 nghiệm là 1 và 1 nghiệm là chính nó ; \(\hept{\begin{cases}a^2+2a+2=\left(a+1\right)^2+1\ge1\\a^2-2a+2=\left(a-1\right)^2+1\ge1\end{cases}}\)
=> có 2 trường hợp xảy ra :
TH1 : \(a^2+2a+2=1\Leftrightarrow a^2+2a+1=0\Leftrightarrow\left(a+1\right)^2=0\Leftrightarrow a=-1\)( thỏa mãn điều kiện a nguyên )
Thay vào có : \(a^4+4=1+4=5\)( thỏa mãn )
TH2 : \(a^2-2a+2=1\Leftrightarrow a^2-2a+1=0\Leftrightarrow\left(a-1\right)^2=0\Leftrightarrow a=1\)( thỏa mãnđiều kiện a nguyên )
Thay vào có : \(a^4+4=1+4=5\)( thỏa mãn )
Vậy \(a\in\left\{1;-1\right\}\)thì \(a^4+4=5\)là số nguyên tố
Tích cho mk nhoa !!! ~~
Bạn Âu Dương Thiên Vy đúng rồi . bạn tham khảo bạn ấy đi
Chúc học giỏi !!!
a)Vì p là số nguyên tố => p>=2
Với p=2 ta có p+4 = 2+4=6 ( không thỏa mãn vì 6 không là số nguyên tố)
Với p=3 ta có p+4 = 3+4 =7 (thỏa mãn vì 7 là số nguyên tố)
p+8= 3+8 = 11( thỏa mãn vì 11 là số nguyên tố)
Với p>3 mà p là số nguyên tố => p có dạng 3k+1 hoặc 3k+2
+) Với p có dạng 3k+1 ta có p+8 = 3k+1+8 = 3k+9 = 3(k+3)
=> p+8 chia hết cho 3
=> p+8 có ít nhất 3 ước là 1, 3, p+8
=> không thỏa mãn
+) Với p có dạng 3k+2 ta có p+4 = 3k+2+4 = 3k+6 = 3(k+2)
=> p+4 chia hết cho 3
=> p+4 có ít nhất 3 ước là 1, 3, p+4
=> không thỏa mãn
Vậy p=3 thì p+4 và p+8 là sô nguyên tố
b) Vì p là số nguyên tố => p>=2
Với p=2 ta có p+4 = 2+4=6 ( không thỏa mãn vì 6 không là số nguyên tố)
Với p=3 ta có p+4 = 3+4 =7 (thỏa mãn vì 7 là số nguyên tố)
p+14= 3+14 = 17( thỏa mãn vì 17 là số nguyên tố)
Với p>3 mà p là số nguyên tố => p có dạng 3k+1 hoặc 3k+2
+) Với p có dạng 3k+1 ta có p+14 = 3k+1+14 = 3k+15 = 3(k+5)
=> p+14 chia hết cho 3
=> p+14 có ít nhất 3 ước là 1, 3, p+14
=> không thỏa mãn
+) Với p có dạng 3k+2 ta có p+4 = 3k+2+4 = 3k+6 = 3(k+2)
=> p+4 chia hết cho 3
=> p+4 có ít nhất 3 ước là 1, 3, p+4
=> không thỏa mãn
Vậy p=3 thì p+4 và p+14 là sô nguyên tố
phàn dưới mik chép thiếu nha, đề bài đầy đủ là
tìm số nguyên tố p sao cho p+4, p+6, p+10, p+12, p+16 cũng là số nguyên tố
a) Nếu P = 2 ⇒ P + 4 = 2 + 4 = 6 ⋮ 2 mà 6 > 2 nên 6 là hợp số ( loại )
Nếu P = 3 ⇒ P + 4 = 3 + 4 = 7 ( thỏa mãn )
⇒ P + 14 = 3 + 14 = 17 ( thỏa mãn )
Các số nguyên tố lớn hơn 3 có dạng 3k + 1 và 3k + 2 ( k ϵ N* )
Nếu P = 3k + 1 ⇒ P + 8 = 3k + 1 + 8 = 3k + 9 = 3 ( k + 3 ) ⋮ 3
Vì P + 8 > 3 mà ( P + 8 ) ⋮ 3 nên P + 8 là hợp số ( loại )
Nếu P = 3k + 2 ⇒ P + 4 = 3k + 2 + 4 = 3k + 6 = 3 ( k + 2 ) ⋮ 3
Vì P + 4 > 3 mà ( P + 4 ) ⋮ 3 nên P + 4 là hợp số ( loại )
Vậy P = 3 để P + 4 và P + 8 là số nguyên tố
b) Nếu P = 2 ⇒ P + 4 = 2 + 4 = 6 ⋮ 2 mà 6 > 2 nên 6 là hợp số ( loại )
Nếu P = 3 ⇒ P + 4 = 3 + 4 = 7 ( thỏa mãn )
⇒ P + 14 = 3 + 14 = 17 ( thỏa mãn )
Các số nguyên tố lớn hơn 3 có dạng 3k + 1 và 3k + 2 ( k ϵ N* )
Nếu P = 3k + 1 ⇒ P + 14 = 3k + 1 + 14 = 3k + 15 = 3 ( k + 5 ) ⋮ 3
Vì P + 14 > 3 mà ( P + 14 ) ⋮ 3 nên P + 14 là hợp số ( loại )
Nếu P = 3k + 2 ⇒ P + 4 = 3k + 2 + 4 = 3k + 6 = 3 ( k + 2 ) ⋮ 3
Vì P + 4 > 3 mà ( P + 4 ) ⋮ 3 nên P + 4 là hợp số ( loại )
Vậy P = 3 để P + 4 và P + 14 là số nguyên tố