Giải phương trình sau :\(|x^2|-|x|=6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(x-6\right)\left(2x-5\right)\left(3x+9\right)=0\Leftrightarrow\left[{}\begin{matrix}x-6=0\Leftrightarrow x=6\\2x-5=0\Leftrightarrow x=\dfrac{5}{2}\\3x+9=0\Leftrightarrow x=-3\end{matrix}\right.\)
\(b,2x\left(x-3\right)+5\left(x-3\right)=0\Leftrightarrow\left(2x+5\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x-3=0\Leftrightarrow x=3\\2x+5=0\Leftrightarrow x=-\dfrac{5}{2}\end{matrix}\right.\)
\(c,x^2-4-\left(x-2\right)\left(3-2x\right)=0\Leftrightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)=0\Leftrightarrow\left(x-2\right)\left(x+2-3+2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(x=-7\left(2m-5\right)x-2m^2+8\Leftrightarrow x+7\left(2m-5\right)=8-2m^2\Leftrightarrow x\left(14m-34\right)=8-2m^2\)
\(ycđb\Leftrightarrow14m-34\ne0\Leftrightarrow m\ne\dfrac{34}{14}\)\(\Rightarrow x=\dfrac{8-2m^2}{14m-34}\)
\(3.17\Leftrightarrow4x^2-4x+1-2x-1=0\Leftrightarrow4x^2-6x=0\Leftrightarrow x\left(4x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)
3.15:
a, \(\Leftrightarrow\left\{{}\begin{matrix}x-6=0\\2x-5=0\\3x+9=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\x=\dfrac{5}{2}\\x=-\dfrac{9}{3}=-3\end{matrix}\right.\)
b, \(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)
c, \(\Leftrightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
3.16
\(\Leftrightarrow\left(2m-5\right).-7-2m^2+8=0\)
\(\Leftrightarrow-14m+35-2m^2+8=0\)
\(\Leftrightarrow-14m-2m^2+43=0\)
\(\Leftrightarrow-2\left(7m+m^2\right)=-43\)
\(\Leftrightarrow m\left(7-m\right)=\dfrac{43}{2}\)
\(\Leftrightarrow\dfrac{m\left(7-m\right)}{1}-\dfrac{43}{2}=0\)
\(\Leftrightarrow\dfrac{14m-2m^2}{2}-\dfrac{43}{2}=0\)
pt vô nghiệm
`|5x| = - 3x + 2`
Nếu `5x>=0<=> x>=0` thì phương trình trên trở thành :
`5x =-3x+2`
`<=> 5x +3x=2`
`<=> 8x=2`
`<=> x= 2/8=1/4` ( thỏa mãn )
Nếu `5x<0<=>x<0` thì phương trình trên trở thành :
`-5x = -3x+2`
`<=>-5x+3x=2`
`<=> 2x=2`
`<=>x=1` ( không thỏa mãn )
Vậy pt đã cho có nghiệm `x=1/4`
__
`6x-2<5x+3`
`<=> 6x-5x<3+2`
`<=>x<5`
Vậy bpt đã cho có tập nghiệm `x<5`
1:
a: =>3x=6
=>x=2
b: =>4x=16
=>x=4
c: =>4x-6=9-x
=>5x=15
=>x=3
d: =>7x-12=x+6
=>6x=18
=>x=3
2:
a: =>2x<=-8
=>x<=-4
b: =>x+5<0
=>x<-5
c: =>2x>8
=>x>4
a:=>3x=15
=>x=5
b: =>8-11x<52
=>-11x<44
=>x>-4
c: \(VT=\left(\dfrac{x^2-\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\right)\cdot\dfrac{x\left(x+6\right)}{2x-6}+\dfrac{x}{6-x}\)
\(=\dfrac{12x-36}{2x-6}\cdot\dfrac{1}{x-6}-\dfrac{x}{x-6}=\dfrac{6}{x-6}-\dfrac{x}{x-6}=-1\)
\(\Leftrightarrow2x^2+3x-4x-6-2\left(x^2-1\right)=6\)
\(\Leftrightarrow2x^2-x-6-2x^2+2-6=0\)
=>x+10=0
hay x=-10
Điều kiện \(x\ne-2\)
+ Trường hợp \(x+2>0\Leftrightarrow x>-2\) Ta có
BPT(Bất phương trình) \(\Leftrightarrow\left(3-x\right)\left(x+2\right)<6\Leftrightarrow x\left(x-1\right)>0\Leftrightarrow x<0\) hoặc \(x>1\)
So sánh với đk \(x>-2\) => -2<x<0 hoặc x>1
+ Trường hợp x+2<0 <=> x<-2 ta có
BPT \(\Leftrightarrow\left(3-x\right)\left(x+2\right)>6\Leftrightarrow x\left(x-1\right)<0\Leftrightarrow\) 0<x<1
So sánh với điều kiện x<-2 => BPT vô nghiệm
Lết luận -2<x<0 hoặc x>1
ĐKXĐ: \(x\ne-2;-3;-1\)
PT \(\Leftrightarrow\dfrac{x}{\left(x+2\right)\left(x+3\right)}-\dfrac{2}{\left(x+1\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\dfrac{x^2+x-2x-6}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}=0\)
\(\Leftrightarrow x^2-x-6=0\)
\(\Leftrightarrow x^2+2x-3x-6=0\)
\(\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\left(loại\right)\end{matrix}\right.\)
Vậy \(x=3\)
ĐKXĐ của phương trình là: \(x\ne-2;x\ne-3;x\ne-1\)
Ta có: \(\dfrac{x}{x^2+5x+6}=\dfrac{x}{x^2+3x+2}\)
<=> \(\dfrac{x}{\left(x+2\right)\left(x+3\right)}=\dfrac{x}{\left(x+2\right)\left(x+1\right)}\)
<=> \(\dfrac{x\left(x+1\right)}{\left(x+2\right)\left(x+3\right)\left(x+1\right)}-\dfrac{x\left(x+3\right)}{\left(x+2\right)\left(x+1\right)\left(x+3\right)}=0\)
<=> \(\dfrac{x^2+x-x^2-3x}{\left(x+2\right)\left(x+3\right)\left(x+1\right)}=0\)
<=> \(-2x=0\Leftrightarrow x=0\)
Ta thấy x=0 thỏa mãn ĐKXĐ
Vậy tập nghiệm của pt là S={0}
Điều kiện để phương trình trở nên có nghĩa là : \(x^2-x-6\ge0\)
Đặt : \(\sqrt{x^2-x-6}=t\left(t\ge0\right)\)
\(\Rightarrow x^2-x-18=t^2-12\left(t^2-12\ge0\right)\)
Khi đó phương trình trở thành :
\(t^2-t-12=0\)
\(\Leftrightarrow\left(t-3\right)\left(t+4\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}t=3\left(nhận\right)\\t=-4\left(loại\right)\end{matrix}\right.\)
\(\Leftrightarrow t=3\)
\(\Leftrightarrow x^2-x-6=9\)
\(\Leftrightarrow x^2-x-15=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{1-\sqrt{61}}{2}\\x_2=\dfrac{1+\sqrt{61}}{2}\end{matrix}\right.\)
\(Vậy...\)
Với x lớn hơn hoặc bằng 0 thì |x2| = x2, |x| = x
PT trở thành
x2-x=6
<=>(x-3)(x+2)=0
<=>x=3 hoặc x=-2(loại)
Với x bé hơn 1 thì |x2| = -x2, |x| = -x
Ta có PT
-x2-x=6
<=>x2+x=-6
<=>x2+x+6=0(vô nghiệm)
Vậy S = {3}
/x^2/ - /x/ = 6