\(|x^2|-|x|=6\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2021

Với x lớn hơn hoặc bằng 0 thì |x2| = x2, |x| = x

PT trở thành

x2-x=6

<=>(x-3)(x+2)=0

<=>x=3 hoặc x=-2(loại)

Với x bé hơn 1 thì |x2| = -x2, |x| = -x

Ta có PT 

-x2-x=6

<=>x2+x=-6

<=>x2+x+6=0(vô nghiệm)

Vậy S = {3}

24 tháng 4 2021

/x^2/ - /x/ = 6

22 tháng 4 2017

\(a,\Leftrightarrow5\left(x-2\right)-15x\le9+10\left(x+1\right)\)

\(\Leftrightarrow5x-10-15x\le9+10x+10\)

\(\Leftrightarrow-20x\le29\)

\(\Leftrightarrow x\ge-1,45\)

Vậy ...........

\(b,\Rightarrow\left(x+2\right)-3\left(x-3\right)=5\left(x-2\right)\)

\(\Leftrightarrow x+2-3x+9-5x+10=0\)

\(\Leftrightarrow-7x+21=0\)

\(\Leftrightarrow x=3\)

Vậy ..............

23 tháng 4 2017

 \(\frac{x-2}{6}-\frac{x}{2}\le\frac{3}{10}+\frac{x+1}{3}\Leftrightarrow\frac{5\left(x-2\right)}{30}-\frac{15x}{30}\le\frac{9}{30}+\frac{10\left(x+1\right)}{30}\)

\(\Leftrightarrow5x-10-15x-9-10x-10\le0\) 

 \(\Leftrightarrow-20x-29\le0\Leftrightarrow\left(-20x\right)\cdot\frac{-1}{20}\ge29\cdot-\frac{1}{20}\)

 \(\Leftrightarrow x\ge-\frac{29}{20}\)

6 tháng 6 2020

Bàii làm

a) ( x - 2 )( x - 3 ) = x2 - 4

<=> x2 - 2x - 3x + 6 = x2 - 4

<=> x2 - x2 - 5x + 6 - 4 = 0

<=> -5x + 2 = 0

<=> -5x = -2

<=> x = 2/5

Vậy x = 2/5 là nghiệm phương trình.

b) \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{x+6}{x\left(x-2\right)}\)

=> x( x + 2 ) - ( x - 2 ) = x + 6

<=> x2 + 2x - x + 2 - x - 6 = 0

<=> x2 - 4 = 0

<=> x2 = 4

<=> x = + 4

Vậy nghiệm S = { + 4 }

c) \(\frac{2x-1}{-3}>1\)

\(\Leftrightarrow\frac{2x-1}{-3}.\left(-3\right)< 1\left(-3\right)\)

\(\Leftrightarrow2x-1< -3\)

\(\Leftrightarrow2x< -2\)

\(\Leftrightarrow x< -1\)

Vậy nghiệm bất phương trình S = { x / x < -1 }

d) ( x - 1 )2 < 5 - 2x

<=> x2 - 2x + 1 < 5 - 2x

<=> x2 - 2x + 1 - 5 + 2x < 0

<=> x2 - 4 < 0

<=> x2 < 4

<=> x < + 2

Vậy tập nghiệm S = { x / x < +2 }

24 tháng 8 2020

a) đk: \(x\ge1\)

 \(x-2\sqrt{x-1}=16\)

\(\Leftrightarrow\left(x-1\right)-2\sqrt{x-1}+1=16\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2=16\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}-1=4\\\sqrt{x-1}-1=-4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}=5\\\sqrt{x-1}=-3\left(vl\right)\end{cases}\Rightarrow}x-1=25\Rightarrow x=26\)

24 tháng 8 2020

b) đk: \(x\ge\frac{9}{2}\)

 \(x-\sqrt{2x-9}=6\)

\(\Leftrightarrow x-6=\sqrt{2x-9}\)

\(\Leftrightarrow\left(x-6\right)^2=\left|2x-9\right|\)

\(\Leftrightarrow\orbr{\begin{cases}2x-9=\left(x-6\right)^2\\2x-9=-\left(x-6\right)^2\end{cases}}\)

+ Nếu: \(2x-9=\left(x-6\right)^2\)

\(\Leftrightarrow x^2-14x+45=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=9\end{cases}}\), thử lại thấy chỉ có x = 9 thỏa mãn

+ Nếu: \(2x-9=-\left(x-6\right)^2\)

\(\Leftrightarrow x^2-10x+27=0\)

\(\Leftrightarrow\left(x-5\right)^2=-2\) (vô lý)

Vậy x = 9

14 tháng 3 2017

3/(x^2-13x+40)+2/(x^2-8x+15)+1/(x^2-5x+6)+6/5+0

3/(x-8)(x-5)+2/(x-5)(x-3)+1/(x-3)(x-2)+6/5=0

1/(x-8)-1/(x-5)+1/(x-5)-1/(x-3)+1/(x-3)-1/(x-2)+6/5=0

1/(x-8)-1/(x-2)+6/5=0

ban tu giai tiep nhan

m^2x+2x=5-3mx

m^2x+3mx+2x=5

x(m^2+3m+2)=5

khi 0x=5 thi pt vo nghiem

m^2+3m+2=0

(m+1)(m+2)=0

m=-1 hoac m=-2

14 tháng 3 2017

ai giúp tui zới

18 tháng 3 2020

\(\frac{x^2-x-6}{x-3}=\frac{x^2-3x+2x-6}{x-3}=\frac{x\left(x-3\right)+2\left(x-3\right)}{\left(x-3\right)}=x+2=0\Leftrightarrow x=-2\)

\(\frac{x^2+2x-\left(3x+6\right)}{x+2}=\frac{x\left(x+2\right)-3\left(x+2\right)}{x+2}=x-3=0\Leftrightarrow x=3\)

\(\frac{4}{x-2}-\left(x-2\right)=0\Leftrightarrow\frac{4}{a}-a=0\left(a=x-2\right)\Leftrightarrow\frac{4}{a}=a\Leftrightarrow a^2=4\Leftrightarrow a=\pm2\Leftrightarrow x=4\text{ hoặc 0}\)

18 tháng 3 2020

a) ĐKXĐ: x \(\ne\)3

Ta có: \(\frac{x^2-x-6}{x-3}=0\)

<=> x2 - x - 6 = 0

<=> x2 - 3x + 2x - 6 = 0

<=> (x + 2)(x - 3) = 0

<=> \(\orbr{\begin{cases}x+2=0\\x-3=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-2\\x=3\left(vn\right)\end{cases}}\)

Vậy S = {-2}

b) ĐKXĐ: x \(\ne\)-2

Ta có: \(\frac{\left(x^2+2x\right)-\left(3x+6\right)}{x+2}=0\)

<=> \(x\left(x+2\right)-3\left(x+2\right)=0\)

<=> \(\left(x-3\right)\left(x+2\right)=0\)

<=> \(\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=3\\x=-2\left(vn\right)\end{cases}}\)

Vậy S = {3}

c) ĐKXĐ: x \(\ne\)2

Ta có: \(\frac{4}{x-2}-x+2=0\)

<=> \(\frac{4-\left(x-2\right)^2}{x-2}=0\)

<=> \(\left(2-x+2\right)\left(2+x-2\right)=0\)

<=> \(x\left(4-x\right)=0\)

<=> \(\orbr{\begin{cases}x=0\\4-x=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
Vậy S = {0; 4}