
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) đk: \(x\ge1\)
\(x-2\sqrt{x-1}=16\)
\(\Leftrightarrow\left(x-1\right)-2\sqrt{x-1}+1=16\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2=16\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}-1=4\\\sqrt{x-1}-1=-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}=5\\\sqrt{x-1}=-3\left(vl\right)\end{cases}\Rightarrow}x-1=25\Rightarrow x=26\)
b) đk: \(x\ge\frac{9}{2}\)
\(x-\sqrt{2x-9}=6\)
\(\Leftrightarrow x-6=\sqrt{2x-9}\)
\(\Leftrightarrow\left(x-6\right)^2=\left|2x-9\right|\)
\(\Leftrightarrow\orbr{\begin{cases}2x-9=\left(x-6\right)^2\\2x-9=-\left(x-6\right)^2\end{cases}}\)
+ Nếu: \(2x-9=\left(x-6\right)^2\)
\(\Leftrightarrow x^2-14x+45=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=9\end{cases}}\), thử lại thấy chỉ có x = 9 thỏa mãn
+ Nếu: \(2x-9=-\left(x-6\right)^2\)
\(\Leftrightarrow x^2-10x+27=0\)
\(\Leftrightarrow\left(x-5\right)^2=-2\) (vô lý)
Vậy x = 9

\(\left|x^2-9\right|=\left|-7\right|\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-9=7\\x^2-9=-7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2=16\\x^2=2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\pm4\\x=\pm\sqrt{2}\end{cases}}\)
x2 + 6x - 16 > 2x - 7
<=> x2 + 6x - 2x > -7 + 16
<=> x2 + 4x > 9
<=> x2 + 4x + 4 > 9 + 4
<=> ( x + 2 )2 > 13
<=> ( x + 2 )2 > \(\left(\pm\sqrt{13}\right)^2\)
<=> \(\orbr{\begin{cases}x+2>\sqrt{13}\\x+2>-\sqrt{13}\end{cases}\Rightarrow}\orbr{\begin{cases}x>\sqrt{13}-2\\x>-2-\sqrt{13}\end{cases}}\)

Gợi ý :
Bài 1 : Cộng thêm 1 vào 3 phân thức đầu, trừ cho 3 ở phân thức thứ 4, có nhân tử chung là (x+2020)
Bài 2 : Trừ mỗi phân thức cho 1, chuyển vế và có nhân tử chung là (x-2021)
Bài 3 : Phân thức thứ nhất trừ đi 1, phân thức hai trù đi 2, phân thức ba trừ đi 3, phân thức bốn trừ cho 4, phân thức 5 trừ cho 5. Có nhân tử chung là (x-100)
bài 3
\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15.\)
=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=0\)
=>\(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)
=>\(\left(x-100\right).\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)
=>(x-100)=0 do \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)
=> x=100

a) ĐKXĐ: \(3x-2\ge0\Leftrightarrow x\ge\frac{2}{3}\)
Phương trình đã cho tương đương với: \(\hept{\begin{cases}-4x^2+21x-22\ge0\\3x-2=16x^4-168x^3+617x^2-924x+484\end{cases}}\)
Giải nhanh bđt ta được: \(\hept{\begin{cases}\frac{21-\sqrt{89}}{8}\le x\le\frac{21+\sqrt{89}}{8}\\16x^4-168x^3+617x^2-927x+486=0\end{cases}}\)
Giải phương trình \(16x^4-168x^3+617x^2-927x+486=0\)
\(\Leftrightarrow\left(4x^2-23x+27\right)\left(4x^2-19x+18\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{23+\sqrt{97}}{8}\\x=\frac{23-\sqrt{97}}{8}\end{cases}}hay\orbr{\begin{cases}x=\frac{19+\sqrt{73}}{8}\\x=\frac{19-\sqrt{73}}{8}\end{cases}}\)
So với điều kiện, ta kết luận phương trình có tập nghiệm \(S=\left\{\frac{23-\sqrt{97}}{8};\frac{19+\sqrt{73}}{8}\right\}\)
Tặng bạn câu này, chúc bạn học tốt. Câu sau bạn tự làm nha

a) Ta có: \(x^3-6x^2+11x-6=0\)
\(\Leftrightarrow x^3-x^2-5x^2+5x+6x-6=0\)
\(\Leftrightarrow x^2\left(x-1\right)-5x\left(x-1\right)+6\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-5x+6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\x-2=0\\x-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\x=2\\x=3\end{cases}}\)
Vậy nghiệm của phương trình là {1;2;3}
Mình đang bận. Câu 2 tí nữa giải quyết sau...