K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2022

`4 3/4 - y = 2 1/4`

`y = 4 3/4- 2 1/4`

`y = 19/4 - 9/4`

`y=10/4`

`y = 5/2`

20 tháng 9 2022

\(4 \dfrac{3}{4}-y=2\dfrac{1}{4}\)

\(\dfrac{19}{4}-y=\dfrac{9}{4}\)

\(y=\dfrac{19}{4}-\frac{9}{4}\)

\(y=\dfrac{10}{4}=\dfrac{5}{2}\)

Bài này dễ nên nãy không có định làm, nhưng mà nghĩ lại thôi làm vậy:Đ

a/ \(\dfrac{x}{-2}=\dfrac{-4}{y}=\dfrac{2}{4}\)

Ta có: \(\dfrac{-4}{y}=\dfrac{2}{4}\Rightarrow y=\dfrac{-4.4}{2}=-8\)

\(\dfrac{x}{-2}=\dfrac{-4}{y}=\dfrac{-4}{-8}=\dfrac{1}{2}\Rightarrow x=\dfrac{-2.1}{2}=-1\)

b/\(\dfrac{2}{x}=\dfrac{y}{-3}\Rightarrow xy=-3.2=-6\)

\(\Rightarrow x;y\inƯ\left(-6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

Ta có bảng giá trị của x, y như sau:

x1-12-23-36-6
y-66-33-22-11

c/ \(\dfrac{x+1}{2}=\dfrac{8}{x+1}\Rightarrow\left(x+1\right)^2=2.8=16\)

\(\Rightarrow\left[{}\begin{matrix}\left(x+1\right)^2=4^2\\\left(x+1\right)^2=\left(-4\right)^2\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)

30 tháng 5 2021

c,(x+1).(x+1)=8.2

(x+1)2=16

⇒x+1=4

⇒x=3

 

AH
Akai Haruma
Giáo viên
9 tháng 5 2021

Lời giải:

\(B=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+....+\frac{2021}{4^{2021}}\)

\(4B=1+\frac{2}{4}+\frac{3}{4^2}+...+\frac{2021}{4^{2020}}\)

\(4B-B=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2020}}-\frac{2021}{4^{2021}}\)

\(3B=1+\frac{1}{4}+\frac{1}{4^2}+....+\frac{1}{4^{2020}}-\frac{2021}{4^{2021}}\)

\(12B=4+1+\frac{1}{4}+...+\frac{1}{4^{2019}}-\frac{2021}{4^{2020}}\)

\(9B=4-\frac{6067}{4^{2021}}<4\Rightarrow B< \frac{4}{9}< \frac{1}{2}\)

26 tháng 5 2021

\(\left\{{}\begin{matrix}2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)=\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\left(1\right)\\16x^5-20x^3+5\sqrt{xy}=\sqrt{\dfrac{y+1}{2}}\left(2\right)\end{matrix}\right.\).

ĐKXĐ: \(xy>0;y\ge-\dfrac{1}{2}\).

Nhận thấy nếu x < 0 thì y < 0. Suy ra VT của (1) âm, còn VP của (1) dương (vô lí)

Do đó x > 0 nên y > 0.

Với a, b > 0 ta có bất đẳng thức \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\).

Thật vậy, áp dụng bất đẳng thức Cauchy - Schwarz ta có:

\(\left(a+b\right)^4\le\left[2\left(a^2+b^2\right)\right]^2=4\left(a^2+b^2\right)^2\le8\left(a^4+b^4\right)\).

Dấu "=" xảy ra khi và chỉ khi a = b.

Áp dụng bất đẳng thức trên ta có:

\(\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^4\le8\left[8\left(x^4+y^4\right)+16x^2y^2\right]=64\left(x^2+y^2\right)^2\)

\(\Rightarrow\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\le8\left(x^2+y^2\right)\). (3)

Lại có \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2=4\left(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\right)\). (4) 

Áp dụng bất đẳng thức AM - GM ta có \(\dfrac{x^6}{y^4}+xy+xy+xy+xy\ge5x^2;\dfrac{y^6}{x^4}+xy+xy+xy+xy\ge5y^2;3\left(x^2+y^2\right)\ge6xy\).

Cộng vế với vế của các bđt trên lại rồi tút gọn ta được \(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\ge2\left(x^2+y^2\right)\). (5)

Từ (3), (4), (5) suy ra \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2\ge\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\Rightarrow2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)\ge\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\).

Do đó đẳng thức ở (1) xảy ra nên ta phải có x = y.

Thay x = y vào (2) ta được:

\(16x^5-20x^3+5x=\sqrt{\dfrac{x+1}{2}}\). (ĐK: \(x>0\))

PT này có một nghiệm là x = 1 mà sau đó không biết giải ntn :v

 

 

AH
Akai Haruma
Giáo viên
29 tháng 12 2021

Bạn tham khảo tại đây:
https://hoc24.vn/cau-hoi/giup-minh-voiiiii-minh-cam-on-tim-xy-biet-dfracx4-dfrac2y13-dfracx-2y-1y-voi-y-0.4107067269450

1, \(\dfrac{3}{4}.\left(\dfrac{2}{5}-\dfrac{1}{15}\right)+\dfrac{3}{4}=\dfrac{3}{4}.\left(\dfrac{2}{5}-\dfrac{1}{15}+1\right)\)

\(=\dfrac{3}{4}.\dfrac{6-1+15}{15}=\dfrac{3}{4}.\dfrac{20}{15}=\dfrac{3}{4}.\dfrac{4}{3}=1\)

2, \(\dfrac{4}{9}.\left(-\dfrac{13}{3}\right)+\dfrac{4}{3}.\dfrac{40}{9}=\dfrac{4}{9}.\left(-\dfrac{13}{3}\right)+\dfrac{4}{9}.\dfrac{40}{3}\)

\(=\dfrac{4}{9}.\left[\left(-\dfrac{13}{3}\right)+\dfrac{40}{3}\right]=\dfrac{4}{9}.9=4\)

3, \(\dfrac{4}{9}-\dfrac{2}{3}.\left(\dfrac{4}{5}+\dfrac{1}{2}\right)=\dfrac{2}{3}\left(\dfrac{2}{3}-\dfrac{4}{5}-\dfrac{1}{2}\right)\)

\(=\dfrac{2}{3}.\dfrac{20-24-15}{30}=\dfrac{2}{3}.\left(-\dfrac{19}{30}\right)=-\dfrac{19}{45}\)

 

 

TH
Thầy Hùng Olm
Manager VIP
8 tháng 3 2023

1.   \(\dfrac{3}{4}.\left(\dfrac{6}{15}-\dfrac{1}{15}\right)+\dfrac{3}{4}=\dfrac{3}{4}.\dfrac{1}{3}+\dfrac{3}{4}=\dfrac{1}{4}+\dfrac{3}{4}=1\)

19 tháng 2 2023

`3/4 + 5/6 = 9/12 + 10/12 = 19/12`

`1/2 + 7/12 = 6/12 + 7/12 = 13/12`

`2/3 xx 3/4 = 2/4 = 1/2`

`7/4 : 2 = 7/4 xx 1/2 = 7/8`

19 tháng 2 2023

\(a,\dfrac{3}{4}+\dfrac{5}{6}=\dfrac{18}{24}+\dfrac{20}{24}=\dfrac{38}{24}=\dfrac{19}{12}\)

\(b,\dfrac{1}{2}+\dfrac{7}{12}=\dfrac{6}{12}+\dfrac{7}{12}=\dfrac{13}{12}\)

\(c,\dfrac{2}{3}x\dfrac{3}{4}=\dfrac{2}{4}\)

\(d,\dfrac{7}{4}:2=\dfrac{7}{4}x\dfrac{1}{2}=\dfrac{7}{8}\)

a: =>2/x+2/y=2 và 4/x-2/y=1

=>6/x=3 và 1/x+1/y=1

=>x=2 và 1/y=1-1/2=1/2

=>x=2; y=2

b: Đặt 1/x=a; 1/y=b

=>1/3a+1/3b=1/4 và 5/6a+b=2/3

=>a=1/2; b=1/4

=>x=2; y=4

23 tháng 2 2023

a, \(\dfrac{x-1}{21}\) = \(\dfrac{3}{x+1}\)

   ( x-1)(x+1) = 21.3

    x2 + x - x -1 = 63

     x2                = 63 + 1

     x2               = 64

    x = + - 8

b, 2\(\dfrac{1}{2}\)x + x = 2\(\dfrac{1}{17}\)

        x( \(\dfrac{5}{2}\) + 1) = \(\dfrac{35}{17}\)

       x              = \(\dfrac{35}{17}\) : ( \(\dfrac{5}{2}\)+1)

       x             = \(\dfrac{35}{17}\) x \(\dfrac{2}{7}\)

       x            = \(\dfrac{10}{17}\)

c, (x + \(\dfrac{1}{4}\) - \(\dfrac{2}{3}\) ) : ( 2 + \(\dfrac{1}{6}\) - \(\dfrac{1}{4}\)) = \(\dfrac{7}{46}\)

   (x  - \(\dfrac{5}{12}\)):  \(\dfrac{23}{12}\)                     =   \(\dfrac{7}{46}\)

  (x - \(\dfrac{5}{12}\))                               =   \(\dfrac{7}{46}\) x \(\dfrac{23}{12}\)

  x   - \(\dfrac{5}{12}\)                                =    \(\dfrac{7}{12}\)

 x                                            =    \(\dfrac{7}{12}\) + \(\dfrac{5}{12}\)

x                                             =     1

d, 2\(\dfrac{1}{3}\)x - 1\(\dfrac{3}{4}\)x + \(2\dfrac{2}{3}\)  = 3\(\dfrac{3}{5}\)

   x( \(\dfrac{7}{3}\) - \(\dfrac{7}{4}\)) + \(\dfrac{8}{3}\)      =  \(\dfrac{18}{5}\)

   x\(\dfrac{7}{12}\)                    = \(\dfrac{18}{5}\) - \(\dfrac{8}{3}\)

   x\(\dfrac{7}{12}\)                   = \(\dfrac{14}{15}\)

  x                         = \(\dfrac{14}{15}\) : \(\dfrac{7}{12}\)

 x                          = \(\dfrac{8}{5}\)