y=2x và y=18x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề có đúng không vậy bạn. Có phải là \(\dfrac{-9x^2+18x-17}{x^2-2x+3}=y\left(y+4\right)\)
\(\left(x+y-1\right)^2-2\left(x+y-1\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\left(x+y-1-x-y\right)^2\)
\(=\left(-1\right)^2\)
\(=1\)
\(2x^3-18x=0\)
\(2x\left(x^2-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x=0\\x^2-9=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm3\end{cases}}\)
\(\left(x+y-1\right)^2-2\left(x+y-1\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\left(x+y-1-x-y\right)^2=\left(-1\right)^2=1\)
Áp dụng hằng đẳng thức: \(a^2+2ab+b^2=\left(a+b\right)^2\)
\(2x^3-18x=0\Leftrightarrow2x\left(x^2-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x^2-9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=9\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=\left\{-3;3\right\}\end{cases}}}\)
Vậy x = {-3;0;3}
Bài 5:
a: Xét (O) có
ΔADB nội tiếp
AB là đường kính
Do đó: ΔADB vuông tại D
=>AD\(\perp\)DB tại D
=>AD\(\perp\)BC tại D
Xét ΔABC vuông tại A có AD là đường cao
nên \(AC^2=CD\cdot CB\)
b: Ta có: ΔOAE cân tại O
mà OC là đường cao
nên OC là phân giác của góc AOE
Xét ΔOAC và ΔOEC có
OA=OE
\(\widehat{AOC}=\widehat{EOC}\)
OC chung
Do đó: ΔOAC=ΔOEC
=>\(\widehat{OAC}=\widehat{OEC}\)
mà \(\widehat{OAC}=90^0\)
nên \(\widehat{OEC}=90^0\)
=>CE là tiếp tuyến của (O)
Bài 3:
a:
b: Phương trình hoành độ giao điểm là:
\(-\dfrac{1}{2}x=2x-5\)
=>\(-\dfrac{1}{2}x-2x=-5\)
=>\(-\dfrac{5}{2}x=-5\)
=>x=2
Thay x=2 vào y=-1/2x, ta được:
\(y=-\dfrac{1}{2}\cdot2=-1\)
Vậy: (d) cắt (d') tại điểm A(2;-1)
bài 2 :
tôi làm từng phần 1 nhé
bài 2 :
a)<=>(x+1)+3 chia hết x+4
=>3 chia hết x+4
=>x+4\(\in\){1,-1,3,-3}
=>x\(\in\){-3,-6,-1,-7}