Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(y-2\right)\left(y-3\right)+\left(y-2\right)-1=0\)
\(\Leftrightarrow\left(y-2\right)\left(y-3\right)+\left(y-3\right)=0\)
\(\Leftrightarrow\left(y-3\right)^2=0\)
\(\Leftrightarrow y=3\)
\(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)
\(\Leftrightarrow\left(x+3\right)x\left(x-2\right)=0\)
\(\Leftrightarrow x\in\left\{0;-3;2\right\}\)
a/ \(x^2+y^2=x^2+y^2+2xy-2xy =\left(x+y\right)^2-2xy\)
b/ mình không chắc nữa
bài 3
a/ \(9x^2-49=0 \Leftrightarrow x^2=\frac{49}{9} \Leftrightarrow\orbr{\begin{cases}x=\frac{7}{3}\\x=-\frac{7}{3}\end{cases}}\)
b/ \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x+1\right)\left(x-1\right)-27=0 \Leftrightarrow x^3+27-x\left(x^2-1\right)-27=0\)
\(\Leftrightarrow x^3-x^3+x=0\Leftrightarrow x=0\)
c/\(\left(x-1\right)\left(x+2\right)-x-2=0 \Leftrightarrow \left(x-1\right)\left(x+2\right)-\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)^2=0\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}}\)
d/ \(x\left(3x+2\right)+\left(x+1\right)^2-\left(2x-5\right)\left(2x+5\right)=0\)
\(\Leftrightarrow3x^2+2x+x^2+2x+1-4x^2+25=0\)
\(\Leftrightarrow4x+25=0 \Leftrightarrow x=\frac{-25}{4}\)
e/ mình lười qá ko viết đề đâu
\(\Leftrightarrow4x^2-7x-2-4x^2+4x+3=7\)
\(\Leftrightarrow-3x+1=7 \Leftrightarrow x=-2\)
có gì sai bn sửa lại nha
\(\left(x+y-1\right)^2-2\left(x+y-1\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\left(x+y-1-x-y\right)^2\)
\(=\left(-1\right)^2\)
\(=1\)
\(2x^3-18x=0\)
\(2x\left(x^2-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x=0\\x^2-9=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm3\end{cases}}\)
\(\left(x+y-1\right)^2-2\left(x+y-1\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\left(x+y-1-x-y\right)^2=\left(-1\right)^2=1\)
Áp dụng hằng đẳng thức: \(a^2+2ab+b^2=\left(a+b\right)^2\)
\(2x^3-18x=0\Leftrightarrow2x\left(x^2-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x^2-9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=9\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=\left\{-3;3\right\}\end{cases}}}\)
Vậy x = {-3;0;3}