K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2017

Các bạn ơi: khocroigianroi

15 tháng 1 2022

Đề có đúng không vậy bạn. Có phải là \(\dfrac{-9x^2+18x-17}{x^2-2x+3}=y\left(y+4\right)\)

26 tháng 12 2021

c: \(=x^2+6xy+9y^2\)

e: \(=x^4-4y^2\)

29 tháng 12 2021

Bài 1:

\(a,=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+2y^2}{2\left(x-y\right)\left(x+y\right)}=\dfrac{2y\left(x+y\right)}{2\left(x-y\right)\left(x+y\right)}=\dfrac{y}{x-y}\\ b,Sửa:\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3x}-\dfrac{x}{3x+9}\right)\\ =\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}:\dfrac{3x-9-x^2}{3x\left(x+3\right)}=\dfrac{x^2+3x+9}{x\left(x-3\right)\left(x+3\right)}\cdot\dfrac{-3x\left(x+3\right)}{x^2-3x+9}\\ =\dfrac{-3}{x-3}\)

Bài  2:

\(a,\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\\ b,\Leftrightarrow x^3+x^2+x+a=\left(x+1\right)\cdot a\left(x\right)\\ \text{Thay }x=-1\Leftrightarrow-1+1-1+a=0\Leftrightarrow a=1\)

`a, = 3x^2y - 3xy + 6x^2y + 5xy - 9x^2y`

`= 2xy`.

Thay `x = 2/3; y = -3/4` vào BT:

`2 . 2/3 . -3/4 = -1.`

`b, x(x-2y) - y(y^2-2x)`

`= x^2 - 2xy - y^3 + 2xy`

`= x^2 - y^3`

Thay `x = 5; y =3` vào BT:

`= 5^2 - 3^3 = 25 - 27 = -2`

22 tháng 7 2023

a) \(3x^2y-\left(3xy-6x^2y\right)+\left(5xy-9x^2y\right)\)

\(=3x^2y-3xy+6x^2y+5xy-9x^2y\)

\(=2xy\)

Thay \(x=\dfrac{2}{3},y=-\dfrac{3}{4}\) vào Bt ta có:

\(2\cdot\dfrac{2}{3}\cdot-\dfrac{3}{4}=-1\)

b) \(x\left(x-2y\right)-y\left(y^2-2x\right)\)

\(=x^2-2xy-y^3+2xy\)

\(=x^2-y^3\)

Thay \(x=5,y=3\) vào Bt ta có:
\(5^2-3^3=-3\)

Bài 2:a. \(2x^2+2xy+y^2+9=6x-\left|y+3\right|\) \(\Leftrightarrow\left|y+3\right|=6x-2x^2-2xy-y^2-9\) \(\Leftrightarrow\left|y+3\right|=-x^2-2xy-y^2-x^2+6x-9\) \(\Leftrightarrow\left|y+3\right|=-\left(x+y\right)^2-\left(x-3\right)^2\) \(\Leftrightarrow\left|y+3\right|=-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\) Có: \(\left|y+3\right|\ge0\) \(-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\le0\) Do...
Đọc tiếp

Bài 2:

a. \(2x^2+2xy+y^2+9=6x-\left|y+3\right|\) 

\(\Leftrightarrow\left|y+3\right|=6x-2x^2-2xy-y^2-9\) 

\(\Leftrightarrow\left|y+3\right|=-x^2-2xy-y^2-x^2+6x-9\) 

\(\Leftrightarrow\left|y+3\right|=-\left(x+y\right)^2-\left(x-3\right)^2\) 

\(\Leftrightarrow\left|y+3\right|=-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\) 

Có: \(\left|y+3\right|\ge0\) 

\(-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\le0\) 

Do đó: \(\left|y+3\right|=-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]=0\) 

\(\Leftrightarrow\hept{\begin{cases}y+3=0\\x+y=0\\x-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-3\end{cases}}\) 

b. \(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)\) 

\(\Leftrightarrow\left(2x^2+x-2013\right)^2-4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)+\left[2\left(x^2-5x-2012\right)\right]^2=0\) 

\(\Leftrightarrow\left(2x^2+x-2013-2x^2+10x+4024\right)^2=0\) 

\(\Leftrightarrow\left(11x+2011\right)^2=0\) 

\(\Leftrightarrow11x+2011=0\) 

\(\Leftrightarrow x=-\frac{2011}{11}\) 

0
30 tháng 7 2015

CÂU NÀY RỒI

MÌNH TRẢ LỜI Ở DƯỚI ĐÓ

30 tháng 7 2015

a)  (x-4)(x+4)x-(x2+1)(x2-1)=(x2-16)x-(x4-1)=x3-16x-x4+1

b)  (y-3)(y+3)(y2+9)-(y2+2)(y2-2)=(y2-9)(y2+9)-(y4-4)=y4-81-y4+4=-77

c)  x(x+1/2)-(2x-1)(x+3/4)=x2+1/2x-2x2+3/2x-x-3/4=-x2+x-3/4

29 tháng 9 2019

a) =(x-y)5+(x-y)3=(x-y)3[(x-y)2+1]

b) =33(y-2x)3:-9(y-2x)=-3(y-2x)2

c) =(x-y)2 [3(x-y)3-2(x-y)2+3]:5(x-y)2=[3(x-y)3-2(x-y)2+3]/5

4 tháng 10 2017

Bài 1:

a) \(\left(2x+3\right)\cdot\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)

\(=8x^3-12x^2+18x+12x^2-18x+27-8x^3-3=27-3=24\)

--> đpcm

b) Sửa đề: \(\left(x+3\right)^3-\left(x+9\right)\left(x^2+27\right)\)

\(=x^3+9x^2+27x+27-\left(x^3+27x+9x^2+243\right)\)

\(=x^3+9x^2+27x+27-x^3-27x-9x^2-243=27-243=-216\)

--> đpcm

c) \(\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x-y\right)\left(x^2+xy+y^2\right)-2x^3\)

\(=x^3+y^3+x^3-y^3-2x^3=2x^3-2x^3=0\)

--> đpcm

4 tháng 10 2017

B1: a) \(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)

\(=8x^3-27-8x^3+2\)

\(=-25\)

b) c) Làm theo câu a áp dụng HĐT.

B2:

a) \(\left(x+2\right)^2-9=0\)

\(\Rightarrow\left(x+2+3\right)\left(x+2-3\right)=0\)

\(\Rightarrow\left(x+5\right)\left(x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+5=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}x=-5\\x=1\end{matrix}\right..\)

Mấy câu b,c,d bn chịu khó tạo HĐT nhé.

e) \(\Rightarrow4x^2-4x+1+x^2+6x+9-5x^2+245=0\)

\(\Rightarrow2x=-255\)

\(\Rightarrow x=-\dfrac{255}{2}\)

Vậy \(x=-\dfrac{255}{2}\)