Vẽ đồ thị p:y=2x² d:y=3x-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phương trình hoành độ giao điểm của (d) và (p):
2x + 2m = x2
=> x2 - 2x - 2m = 0
phương trình có 2 nghiệm x1 , x2 phân biệt nên
\(\Delta=4+8m>0\Leftrightarrow m>-\dfrac{1}{2}\)
theo vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1.x_2=-2m\end{matrix}\right.\)
A(x1;x12) => y1=x12
B(x2;x22) => y2=x22
ta có (1 + y1)(1 + y2) = 5
hay y1 + y2 + y1.y2 = 4
hay x12 + x22 + x12.x22 = 4
(x1 + x2)2 - 2x1.x2 + (x1.x2)2 = 4
4 + 4m + 4m2 = 4
4m(1 + m) = 0
=> m = 0 (chọn) hoặc m = -1 (loại vì trái với điều kiện)
vậy...
Phương trình hoành độ giao điểm: \(x^2-2x-2m=0\)
\(\Delta'=1+2m\ge0\Rightarrow m\ge-\dfrac{1}{2}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-2m\end{matrix}\right.\)
\(\left(1+y_1\right)\left(1+y_2\right)=5\)
\(\Leftrightarrow\left(1+x_1^2\right)\left(1+x_2^2\right)=5\)
\(\Leftrightarrow\left(x_1x_2\right)^2+x_1^2+x_2^2=4\)
\(\Leftrightarrow\left(x_1x_2\right)^2+\left(x_1+x_2\right)^2-2x_1x_2-4=0\)
\(\Leftrightarrow4m^2+4m=0\)
\(\Rightarrow\left[{}\begin{matrix}m=0\\m=-1\left(ktm\right)\end{matrix}\right.\)
Pt hoành độ giao điểm:
\(-\dfrac{1}{2}x^2=2x-m^2-1\Leftrightarrow x^2+4x-2\left(m^2+1\right)=0\)
\(ac=-2\left(m^2+1\right)< 0\) ; \(\forall m\Rightarrow\) (d) luôn cắt (P) tại 2 điểm có hoành độ trái dấu
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-4\\x_1x_2=-2\left(m^2+1\right)\end{matrix}\right.\)
Ta có: \(\dfrac{1}{x_1}=\dfrac{1}{\left|x_2\right|}+\dfrac{1}{2}>0\Rightarrow x_1>0\Rightarrow x_2< 0\Rightarrow\dfrac{1}{\left|x_2\right|}=-\dfrac{1}{x_2}\)
Do đó:
\(\dfrac{1}{x_1}=\dfrac{1}{\left|x_2\right|}+\dfrac{1}{2}\Leftrightarrow\dfrac{1}{x_1}=-\dfrac{1}{x_2}+\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{1}{2}\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{-4}{-2\left(m^2+1\right)}=\dfrac{1}{2}\Leftrightarrow m^2+1=4\)
\(\Leftrightarrow m^2=3\Rightarrow m=\pm\sqrt{3}\)
Phương trình hoành độ giao điểm của (P) và d là
- x 2 + 2 x = m x ⇔ x 2 - 2 - m x = 0 ⇔ x = 0 x = 2 - m > 0
Khi đó
S = ∫ 0 2 - m - x 2 + 2 x - m x d x = ∫ 0 2 - m - x 2 + 2 x - m x = - x 3 3 + x 2 - m x 2 2 0 2 - m = - m 3 + 6 m 2 - 12 m + 8 = 27
Do đó m 3 - 6 m 2 + 12 m + 9 = 0
Giải phương trình này, ta tìm được m = -1 là giá trị thỏa yêu cầu bài toán.
Đáp án A
a: Thay x=1 và y=3 vào (d), ta đc:
m-1+2=3
=>m+1=3
=>m=2
b: Thay y=0 vào (d), ta đc:
x-1=0
=>x=1
Thay x=1 và y=0 vào (d1), ta được:
2*1+m-1=0
=>m=-1
Đáp án C
Tọa độ giao điểm của hai đồ thị là nghiệm của phương trình
Đáp án A.
= x 2 − x 1 − 1 3 x 1 + x 2 2 − x 1 x 2 + m 2 x 1 + x 2 + 1