1+1+1+1..............+1=900
tính số số hạng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Ta có bàng tần số:
+) Từ bảng tần số ta có số lượng áo trung bình bán ra trong 1 tháng là: \(\overline x = 575\) ( chiếc áo)
+) Phương sai của mẫu số liệu là:
\(\begin{array}{l}{s^2} = \frac{{{{\left( {410 - \overline x } \right)}^2} + {{\left( {430 - \overline x } \right)}^2} + {{\left( {450 - \overline x } \right)}^2} + {{\left( {525 - \overline x } \right)}^2} + {{\left( {550 - \overline x } \right)}^2} + {{\left( {560 - \overline x } \right)}^2} + {{\left( {635 - \overline x } \right)}^2} + {{\left( {760 - \overline x } \right)}^2} + {{\left( {800 - \overline x } \right)}^2} + {{\left( {900 - \overline x } \right)}^2}}}{{12}}\\ = 25401\end{array}\)
+) Độ lệch chuẩn của mẫu số liệu là: \(s = \sqrt {{s^2}} = 159,4\)
Hãy tích cho tui đi
khi bạn tích tui
tui không tích lại bạn đâu
THANKS
Ta sử dụng công thức truy hồi để tìm các số hạng tiếp theo trong dãy:
\(1;3;2;-1;-3;-2;1;3;2;-1;-3;-2...\)
Từ đó ta nhận thấy quy luật:
\(u_n=1\) nếu \(n=6k+1\)
\(u_n=3\) nếu \(n=6k+2\)
\(u_n=2\) nếu \(n=6k+3\)
\(u_n=-1\) nếu \(n=6k+4\)
\(u_n=-3\) nếu \(n=6k+5\)
\(u_n=-2\) nếu \(n=6k\)
Đồng thời:
\(u_3=u_2-u_1\)
\(u_4=u_3-u_2\)
...
\(u_{99}=u_{98}-u_{97}\)
\(u_{100}=u_{99}-u_{98}\)
Cộng vế với vế:
\(u_3+u_4+...+u_{100}=u_{99}-u_1\)
\(\Leftrightarrow u_1+u_2+...+u_{100}=u_2+u_{99}=3+u_{6.16+3}=3+2=5\)
a,Tổng 10 số đầu tiên là.
1-1/11 = 10/11
b, 1/10200= 1/100.102
=> không là 1số hag cua day vì mẫu là 2 số tự nhiên liên tiếp nhân với nhau ra mẫu
A,Tổng 10 số đầu tiên là. 1-1/11 = 10/11 b, 1/10200= 1/100.102 => không là 1số hag cua day vì mẫu là 2 số tự nhiên liên tiếp nhân với nhau ra mẫu
a) Cấp số nhân có \({u_1} = 1,\;\;q = \;4\)
Số hạng tổng quát: \({u_n} = {4^{n - 1}}\)
Số hạng thứ 5: \({u_5} = {4^{5 - 1}} = 256\)
Số hạng thứ 100: \({u_{100}} = {4^{100 - 1}} = {4^{99}}\).
b) Cấp số nhân có \({u_1} = 2,\;q = - \frac{1}{4}\)
Số hạng tổng quát: \({u_n} = 2 \times {\left( { - \frac{1}{4}} \right)^{n - 1}}\)
Số hạng thứ 5: \({u_5} = 2 \times {\left( { - \frac{1}{4}} \right)^{5 - 1}} = \frac{1}{{128}}\)
Số hạng thứ 100: \({u_{100}} = 2 \times {\left( { - \frac{1}{4}} \right)^{100 - 1}} = \frac{ -1}{{2^{197}}}\)
u1=-1
u2=-1+3=2
u3=2+3=5
u4=5+3=8
u5=8+3=11
Công thức tổng quát là: \(U_n=U_1+\left(n-1\right)\cdot\left(3\right)=-1+3n-3=3n-4\)
GIẢI
dãy số trên có số số hạng là :
( 900 - 1 ) : 1 + 1 = 900 ( số hạng )
đáp số : 900 số hạng
có 900 số hạng