\(\dfrac{21^2.14.126}{35^5.6}\)
rút gọn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{21^2.14.126}{35^5.6}\)
\(=\frac{21^2.14.21.6}{35^5.6}\)
\(=\frac{3^3.7^3.7.2}{35^5}\)
\(=\frac{3^3.7^4.2}{5^4.7^4.35}\)
\(=\frac{9.2}{5^4.35}=\frac{18}{21875}\)
\(C=\frac{21^2.14.126}{35^5.6}=\frac{3^2.7^2.2.7.2.3^2.7}{5^5.7^5.2.3}=\frac{3^4.7^4.2^2}{5^5.7^5.2.3}=\frac{3^3.1.2}{5^5.4.1.1}=\frac{54}{12500}=\frac{27}{6250}\)
a) \(\dfrac{4}{24}+\dfrac{7}{6}=\dfrac{4}{24}+\dfrac{28}{24}=\dfrac{4+28}{24}=\dfrac{32}{24}=\dfrac{4}{3}\)
b) \(\dfrac{10}{15}-\dfrac{1}{3}=\dfrac{10}{15}-\dfrac{5}{15}=\dfrac{10-5}{15}=\dfrac{5}{15}=\dfrac{1}{3}\)
c) \(\dfrac{21}{28}-\dfrac{1}{4}=\dfrac{21}{28}-\dfrac{7}{28}=\dfrac{21-7}{28}=\dfrac{14}{28}=\dfrac{1}{2}\)
d) \(\dfrac{35}{40}+\dfrac{5}{8}=\dfrac{35}{40}+\dfrac{25}{40}=\dfrac{35+25}{40}=\dfrac{60}{40}=\dfrac{3}{2}\)
\(a)\dfrac{4}{24}=\dfrac{1}{6} \\ \dfrac{1}{6}+\dfrac{7}{6}\\ =\dfrac{8}{6}=\dfrac{4}{3}\\ b)\dfrac{10}{15}=\dfrac{2}{3}-\dfrac{1}{3}\\ =\dfrac{1}{3}\\ c)\dfrac{21}{28}=\dfrac{3}{4}\\ \dfrac{3}{4}-\dfrac{1}{4}\\ =\dfrac{2}{4}=\dfrac{1}{2}\\ d)\dfrac{35}{40}=\dfrac{7}{8}\\ \dfrac{7}{8}+\dfrac{5}{8}\\ =\dfrac{12}{8}=\dfrac{3}{2}\)
a: \(=\dfrac{2^{12}\cdot3^{14}}{3^{12}\cdot2^{12}}=3^2=9\)
b: \(=\dfrac{7^3\cdot2\cdot5^3}{5^2\cdot7^2\cdot6}=7\cdot5\cdot\dfrac{1}{3}=\dfrac{35}{3}\)
d: =2^5(2^8+1)/2^2(2^8+1)=2^3=8
c: \(=\dfrac{5^3\cdot3^6\cdot2^8\cdot5^4\cdot3^4\cdot2^2}{2^{10}\cdot3^{10}\cdot5^5}=5^2\)
Tính các tổng dưới đây sau khi đã rút gọn phân số :
a)\(\dfrac{7}{21}\) + \(\dfrac{9}{-36}\) = \(\dfrac{7}{21}\)+\(\dfrac{-9}{36}\)=\(\dfrac{1}{3}\)+\(\dfrac{-1}{4}\)=\(\dfrac{4}{12}\)+\(\dfrac{-3}{12}\)=\(\dfrac{1}{12}\)
b) \(\dfrac{-12}{18}\)+\(\dfrac{-21}{35}\)=\(\dfrac{-2}{3}\)+\(\dfrac{-3}{5}\)=\(\dfrac{-10}{15}\)+\(\dfrac{-9}{15}\)=\(\dfrac{-19}{15}\)
c) \(\dfrac{-3}{21}\)+\(\dfrac{6}{42}\)=\(\dfrac{-1}{7}\)+\(\dfrac{1}{7}\)=0
d) \(\dfrac{-18}{24}\)+\(\dfrac{15}{-21}\)=\(\dfrac{-18}{24}\)+\(\dfrac{-15}{21}\)=\(\dfrac{-3}{4}\)+\(\dfrac{-5}{7}\)=\(\dfrac{-21}{28}\)+\(\dfrac{-20}{28}\)=\(\dfrac{-41}{28}\)
\(A=\dfrac{21^2.14.125}{35^5.6}=\dfrac{3^2.7^2.2.7.5^3}{7^5.5^5.2.3}=\dfrac{3^2.7^3.2.5^3}{7^5.5^5.2.3}=\dfrac{3}{7^2.5^2}=\dfrac{3}{1225}\)
a. \(\dfrac{\sqrt{2}.\left(\sqrt{3}+\sqrt{5}\right)}{\sqrt{7}.\left(\sqrt{3}+\sqrt{5}\right)}=\dfrac{\sqrt{2}}{\sqrt{7}}=\sqrt{\dfrac{2}{7}}\)
d. \(\dfrac{\sqrt{6-2\sqrt{5}}}{\sqrt{5}-1}=\dfrac{\sqrt{5-2\sqrt{5}+1}}{\sqrt{5}-1}=\dfrac{\left(\sqrt{5}-1\right)^2}{\sqrt{5}-1}=\sqrt{5}-1\)
d: \(D=\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{9\left(x^2+2xy+y^2\right)}{4}}\)
\(=\dfrac{2}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{3\left(x+y\right)}{2}\)
\(=\dfrac{3}{x-y}\)
\(=\dfrac{5}{3}+2-\dfrac{3}{4}=\dfrac{5.4+2.12-3.3}{12}=\dfrac{20+24-9}{12}=\dfrac{35}{12}\)
\(\dfrac{-8}{12}=\dfrac{-8:4}{12:4}=\dfrac{-2}{3}\\ \dfrac{15}{-60}=\dfrac{15:15}{-60:15}=\dfrac{1}{-4}\\ \dfrac{-16}{-72}=\dfrac{-16:\left(-8\right)}{-72:\left(-8\right)}=\dfrac{2}{9}\\ \dfrac{35}{14.15}=\dfrac{5.7}{7.2.5.3}=\dfrac{1}{2.3}=\dfrac{1}{6}\)
\(\dfrac{21^2.14.126}{35^5.6}\)
= \(\dfrac{3^2.7^2.7.2.3.7.6}{5^5.7^5.6}\)
= \(\dfrac{3^3.7^4.2}{5^5.7^5}\)
= \(\dfrac{3^3.2}{5^5.7}\)