Bài 3: Cho số 9a731b chia hết cho 11 và a - b = 4 tìm số đó
Bài 4: cho số ab1 chia hết cho 7 và a + b = 6 tìm số đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: \(\overline{abc}\) \(\times\) 5 = \(\overline{dad}\) ⇒ \(\overline{dad}\) ⋮ 5 ⇒ \(d\) = 0; 5
Vì số 0 không thể đứng đầu nên \(d\) = 5
Thay \(d=5\) vào biểu thức \(\overline{abc}\) \(\times\) 5 = \(dad\) ta có:
\(\overline{abc}\) \(\times\) 5 = \(\overline{5a5}\) . Nếu \(a\) ≥ 2 ⇒ \(\overline{abc}\) \(\times\) 5 ≥ 200 \(\times\) 5 = 1000 (loại)
Vậy \(a\) = 1; Thay \(a\) = 1 vào biểu thức : \(\overline{abc}\) \(\times\) 5 = \(\overline{5a5}\) ta có:
\(\overline{1bc}\) \(\times\) 5 = 515 ⇒ \(\overline{1bc}\) = 515 : 5 ⇒ \(\overline{1bc}\) = 103
Vậy \(\overline{abc}\) = 103
Số có hai chữ số mà chữ số hàng chục lớn hơn chữ số hàng đơn vị là các số có dạng:
\(\overline{9a}\); \(\overline{8b}\); \(\overline{7c}\); \(\overline{6d}\); \(\overline{5e}\); \(\overline{4f}\); \(\overline{3g}\); \(\overline{2h}\); \(\overline{1k}\)
Trong đó \(a;b;c;d;e;f;g;h;k\) lần lượt có số cách chọn là:
9; 8; 7; 6; 5; 4; 3; 2; 1
Số các số có 2 chữ số mà chữ số hàng chục lớn hơn chữ số hàng đon vị là:
9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 45
Đáp số: 45 số
bài 11:
Gọi số phải tìm là: A = 567abc
Do A chia 5 dư 1 mà A lẻ nên c = 1
Tổng các chữ số của A là: 5 + 6 + 7 + a + b + 1 = a + b + 19
Để A chia 9 dư 1 thì a + b = 0 (loại)
a + b = 9
a + b = 18 (loại) (Có 2 chữ số bằng nhau 9 + 9)
Xét a + b = 9, a khác b và khác 5,6,7,1 ==> a = 9, b = 0 ==> A = 567901
==> a = 0, b = 9 ==> A = 567091
ĐS: 3 số phải thêm là: 901 hoặc 091
Bài 1 :
a)
Ta có: 87ab ⋮ 9 ⇔ (8 + 7 + a + b) ⁝⋮ 9 ⇔ (15 + a + b) ⋮ 9
Suy ra: (a + b) ∈ {3; 12}
Vì a – b = 4 nên a + b > 3. Suy ra a + b = 12
Thay a = 4 + b vào a + b = 12, ta có:
b + (4 + b) = 12 ⇔ 2b = 12 – 4
⇔ 2b = 8 ⇔ b = 4
a = 4 + b = 4 + 4 = 8
Vậy ta có số: 8784.
b)
⇒ (7+a+5+b+1) chia hết cho 3
⇔ (13+a+b) chia hết cho 3
+ Vì a, b là chữ số, mà a-b=4
⇒ a,b ∈ (9;5) (8;4) (7;3) (6;2) (5;1) (4;0).
Thay vào biểu thức 7a5b1, ta được :
ĐA 1: a=9; b=5.
ĐA 2: a=6; b=2.
Bài 2 :
bai1
vi ab1 chia hết cho 7 mà a+b=6 ta có các cặp sau :
1+5 : 5+1 :3+3 ; 2+4 ; 4+2 sau đó ban thu chọn nhé để ra kết quả đúng
bai 2
c = 5 vì abc chia hết cho 45
tự làm nhé
(3+32+33)+(34+35+36)+...+(32005+32006+32007)
=3(1+3+32)34(1+3+32)+...+32005(1+3+32)
=3.13+3^4.13+...+3^2005.13
=13(3+34+...+32005)
tick mk nha
dựa vào dấu hiệu chia hết cho 11 ta có
9 + 7 + 1 - a - 3 - b = 0 ⇒ 14 -a -b =0 ⇒ a+ b=14 mà a- b=4
⇒a=b+4 thay vào a+b=14 ⇒b+4+b =14 ⇒2b= 14 -4 =10 ⇒b=10:2=5
⇒a=14 -5=9
Vậy số đó là 997315
b , \(\overline{ab1}\)= 100xa +10xb +1
⇔ 98a + 7b + 2a + 3b + 1 ⋮ 7
⇔ 2a + 3b + 1 ⋮ 7
⇔2(a+b) + b + 1 ⋮ 7
⇔ 2.6 + b + 1 ⋮ 7
⇔ 13 + b ⋮ 7
⇔ 6 + b ⋮ 7
⇔ b = 1;8
b = 1 thì a = 5; b = 8 thì a = - 2 (loại)
vậy số cần tìm là 511