1 + 3/4 - ( 1/2 - 3/4:3/2)
giúp :(
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =4*1/16+25*[(3/4:5/4)]^3:27/8
=1/4+25*(3/5:3/2)^3
=1/4+25*(2/5)^3
=1/4+8/5
=1,6+0,25=1,85
b: =8+3-1+8-8
=8+2=10
a) \(4\times\dfrac{1}{4^2}+25\times\left[\dfrac{3^3}{4^3}:\dfrac{5^3}{4^3}\right]:\dfrac{3^3}{2^3}\)
\(=\dfrac{1}{4}+5^2\times\dfrac{3^3}{4^3}\times\dfrac{4^3}{5^3}\times\dfrac{2^3}{3^3}\)
\(=\dfrac{1}{4}+\dfrac{2^3}{5}=\dfrac{1}{4}+\dfrac{8}{5}=\dfrac{37}{20}\)
b) \(2^3+3\times\left(\dfrac{1}{2}\right)^{0-1}+\left[\left(-2\right)^2:\dfrac{1}{2}\right]-8\)
\(=8+3\times\left(2^{-1}\right)^{-1}+2^2\times2-8\)
\(=3\times2+2^3=14\)
Muộn rùi ngủ thôi không mai lớn có một khúc à :v
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn nhé. Viết thế này người đọc đề sẽ rất mệt.
(1+1) + (1+2) + (1+2+3) + (1+2+3+4) + ... + (1+2+3+4+...+99)
Ta có thể nhận thấy rằng mỗi mục trong dãy có thể được biểu diễn dưới dạng tổng của các số từ 1 đến n, trong đó n tăng dần từ 1 đến 99. Vậy ta có thể viết lại dãy số ban đầu như sau:
(1) + (1+2) + (1+2+3) + (1+2+3+4) + ... + (1+2+3+4+...+99)
= (1) + (1+2) + (1+2+3) + (1+2+3+4) + ... + (1+2+3+4+...+99)
= 1*(1) + 2*(1+2) + 3*(1+2+3) + 4*(1+2+3+4) + ... + 99*(1+2+3+4+...+99)
= 1*(1) + 2*(1+2) + 3*(1+2+3) + 4*(1+2+3+4) + ... + 99*(1+2+3+4+...+99)
= 11 + 23 + 36 + 410 + ... + 99*(1+2+3+4+...+99)
= 11 + 2(1+2) + 3*(1+2+3) + 4*(1+2+3+4) + ... + 99*(1+2+3+4+...+99)
= 11 + 21 + 22 + 31 + 32 + 33 + 41 + 42 + 43 + 44 + ... + 99*(1+2+3+4+...+99)
= 1^2 + 2^2 + 3^2 + 4^2 + ... + 99^2
Vậy, tổng của dãy số ban đầu là tổng bình phương của các số từ 1 đến 99.
\(1-\frac{1}{2}+2-\frac{2}{3}+3-\frac{3}{4}+4-\frac{1}{4}-3-\frac{1}{3}-2-\frac{1}{2}-1\)
\(=\left(1-1\right)+\left(2-2\right)+\left(3-3\right)+4-2.\frac{1}{2}-\left(\frac{2}{3}+\frac{1}{3}\right)-\left(\frac{3}{4}+\frac{1}{4}\right)\)
\(=4-1-1-1=1\)
\(1-\frac{1}{2}+2-\frac{2}{3}+3-\frac{3}{4}+4-\frac{1}{4}-3-\frac{1}{3}-2-\frac{1}{2}-1\)
\(\left(1-1\right)-\left(\frac{1}{2}+\frac{1}{2}\right)+\left(2-2\right)-\left(\frac{2}{3}+\frac{1}{3}\right)+\left(3-3\right)-\left(\frac{3}{4}+\frac{1}{4}\right)-1\)
\(-1-1-1+4=1\)
MIK XIN LỖI BN NHA VÌ ĐÁNH MÁY HƠI LÂU NHA !! CHÚC BN HOK TỐT NHAA
1, \(\dfrac{3}{4}.\left(\dfrac{2}{5}-\dfrac{1}{15}\right)+\dfrac{3}{4}=\dfrac{3}{4}.\left(\dfrac{2}{5}-\dfrac{1}{15}+1\right)\)
\(=\dfrac{3}{4}.\dfrac{6-1+15}{15}=\dfrac{3}{4}.\dfrac{20}{15}=\dfrac{3}{4}.\dfrac{4}{3}=1\)
2, \(\dfrac{4}{9}.\left(-\dfrac{13}{3}\right)+\dfrac{4}{3}.\dfrac{40}{9}=\dfrac{4}{9}.\left(-\dfrac{13}{3}\right)+\dfrac{4}{9}.\dfrac{40}{3}\)
\(=\dfrac{4}{9}.\left[\left(-\dfrac{13}{3}\right)+\dfrac{40}{3}\right]=\dfrac{4}{9}.9=4\)
3, \(\dfrac{4}{9}-\dfrac{2}{3}.\left(\dfrac{4}{5}+\dfrac{1}{2}\right)=\dfrac{2}{3}\left(\dfrac{2}{3}-\dfrac{4}{5}-\dfrac{1}{2}\right)\)
\(=\dfrac{2}{3}.\dfrac{20-24-15}{30}=\dfrac{2}{3}.\left(-\dfrac{19}{30}\right)=-\dfrac{19}{45}\)
1. \(\dfrac{3}{4}.\left(\dfrac{6}{15}-\dfrac{1}{15}\right)+\dfrac{3}{4}=\dfrac{3}{4}.\dfrac{1}{3}+\dfrac{3}{4}=\dfrac{1}{4}+\dfrac{3}{4}=1\)
1/2* x+2/3=9/2
1/2 * x = 9/2 - 2/3
1/2 * x= 23/6
x= 23/6 : 1/2
x= 23/6 x 2= 23/3
___
1/2*x-1/3=2/3
1/2*x = 2/3 + 1/3
1/2 * x= 1
x= 1: 1/2
x= 2
____
1/4+3/4:x=3
3/4 : x = 3 - 1/4
3/4 : x= 11/4
x= 11/4 : 3/4
x= 11/3
\(\dfrac{1}{2}\)\(\times\)\(x\) + \(\dfrac{2}{3}\) = \(\dfrac{9}{2}\)
\(\dfrac{1}{2}\)\(\times\)\(x\) = \(\dfrac{9}{2}\) - \(\dfrac{2}{3}\)
\(\dfrac{1}{2}\)\(\times\)\(x\) = \(\dfrac{23}{6}\)
\(x\) = \(\dfrac{23}{6}\):\(\dfrac{1}{2}\)
\(x\) = \(\dfrac{23}{3}\)
\(\dfrac{1}{2}\)\(\times\)\(x\) - \(\dfrac{1}{3}\) = \(\dfrac{2}{3}\)
\(\dfrac{1}{2}\)\(\times\)\(x\) = \(\dfrac{2}{3}\) + \(\dfrac{1}{3}\)
\(\dfrac{1}{2}\times\)\(x\) = 1
\(x\) = 1 : \(\dfrac{1}{2}\)
\(x\) = 2
\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\): \(x\) = 3
\(\dfrac{3}{4}\): \(x\) = 3 - \(\dfrac{1}{4}\)
\(\dfrac{3}{4}\):\(x\) = \(\dfrac{11}{4}\)
\(x\) = \(\dfrac{3}{4}\): \(\dfrac{11}{4}\)
\(x\) = \(\dfrac{3}{11}\)
a) 3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3
=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)]
=n.(n+1).(n+2)
=>S=[n.(n+1).(n+2)] /3
b)
Nhân 4 vào hai vế ta được:
4A = 4.[1.2.3 + 2.3.4 + 3.4.5 + … + (n – 1).n.(n + 1)]
4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + … + (n – 1).n.(n + 1).4
4A = 1.2.3.4 + 2.3.4.(5 – 1) + 3.4.5.(6 – 2) + … + (n – 1).n.(n + 1).[(n + 2) – (n – 2)]
4A = 1.2.3.4 + 2.3.4.5 – 1.2.3.4 + 3.4.5.6 – 2.3.4.5 + … + (n – 1).n(n + 1).(n + 2) – (n – 2).(n – 1).n.(n + 1)
4A = (n – 1).n(n + 1).(n + 2)
A = (n – 1).n(n + 1).(n + 2) : 4.
3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3
=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)]
=n.(n+1).(n+2)
=>S=[n.(n+1).(n+2)] /3
1 + 3/4 - ( 1/2 - 3/4:3)
= 1 + 3/4 - ( 1/2 - 1/4 )
= 1 + 3/4 - 1/4
= 7/4 - 1/4
= 3/2
3/2 nhé xin lỗi mình nhầm