K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2021

a) 3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3

=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]

=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)] 

=n.(n+1).(n+2) 

=>S=[n.(n+1).(n+2)] /3

b)

Nhân 4 vào hai vế ta được:

4A = 4.[1.2.3 + 2.3.4 + 3.4.5 + … + (n – 1).n.(n + 1)]

4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + … + (n – 1).n.(n + 1).4

4A = 1.2.3.4 + 2.3.4.(5 – 1) + 3.4.5.(6 – 2) + … + (n – 1).n.(n + 1).[(n + 2) – (n – 2)]

4A = 1.2.3.4 + 2.3.4.5 – 1.2.3.4 + 3.4.5.6 – 2.3.4.5 + … + (n – 1).n(n + 1).(n + 2) – (n – 2).(n – 1).n.(n + 1)

4A = (n – 1).n(n + 1).(n + 2)

A = (n – 1).n(n + 1).(n + 2) : 4.

3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3

=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]

=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)] 

=n.(n+1).(n+2) 

=>S=[n.(n+1).(n+2)] /3

  
1 tháng 11 2021

Ta có : 2 + 4 + 6 + ... + 2(n - 1) + 2n = 210

<=> 2[1 + 2 + 3 + ... + (n - 1) + n] = 210

<=> 1 + 2 + 3 + ... + n = 105

<=> [(n - 1) : 1 + 1)(n + 1) : 2 = 105

<=> n(n + 1) = 210

<=> n(n + 1) = 14.15

=> n = 14

Vậy n = 14

b) Ta có : 1 + 3 + 5 + ... + (2n - 1) = 225

<=> [(2n - 1 - 1) : 2 + 1](2n - 1 + 1) : 2 = 225

<=> n2 = 225

<=> n2 = 152

<=> n = 15

Vậy n = 15

1 tháng 11 2021
210 = 2 + 4 + 6 + ...+ 2n = n(2 + 2n)/2 = n(1 + n) = n^2 + n n^2 + n - 210 = 0 => n = -15 (loại); n = 14 225 = 1 +3 + 5 +...+ (2n + 1) = (n + 1)(2n + 1 + 1)/2 = (n + 1)^2 n + 1 = 15 n = 14

a: Số số hạng là:

(2n-2):2+1=n(số)

Theo đề, ta có:

\(\left(2n+2\right)\cdot\dfrac{n}{2}=210\)

\(\Leftrightarrow n\left(n+1\right)=210\)

\(\Leftrightarrow n=14\)

22 tháng 7 2023

1/

\(N=1.\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+99\left(100-1\right)=\)

\(=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)=\)

Đặt 

\(A=1.2+2.3+3.4+...+99.100\)

\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3=\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)=\)

\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-98.99.100+99.100.101=\)

\(=99.100.101\Rightarrow A=\dfrac{99.100.101}{3}=33.100.101\)

Đặt

\(B=1+2+3+...+99=\dfrac{99.\left(1+99\right)}{2}=4950\)

\(\Rightarrow N=A-B\)

2/

Số hạng cuối cùng là 10000 hoặc 1000000 mới làm được

\(A=1^2+2^2+3^2+...+100^2\) 

Tính như câu 1

3/ Làm như bài 4

4/

\(S=1^2+3^2+5^2+...+99^2=\)

\(=1.\left(3-2\right)+3\left(5-2\right)+5\left(7-2\right)+...+99\left(101-2\right)=\)

\(=\left(1.3+3.5+5.7+...+99.101\right)-2\left(1+3+5+...+99\right)\)

Đặt

\(B=1+3+5+...+99=\dfrac{50.\left(1+99\right)}{2}=2500\) 

Đặt

\(A=1.3+3.5+5.7+...+99.101\)

\(6A=1.3.6+3.5.6+3.7.6+...+99.101.6=\)

\(=1.3.\left(5+1\right)+3.5.\left(7-1\right)+5.7.\left(9-3\right)+...+99.101.\left(103-97\right)=\)

\(=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103=\)

\(=3+99.101.103\Rightarrow A=\dfrac{3+99.101.103}{6}\)

\(\Rightarrow S=A-2B\)

GH
22 tháng 7 2023

Bài 1:

\(N=1^2+2^2+3^3+...+99^2\)

\(N=1.1+2.2+3.3+...+99.99\)

\(N=1.\left(2-1\right)+2.\left(3-1\right)+3.\left(4-1\right)+...+99.\left(100-1\right)\)

\(N=1.2-1+2.3-2+3.4-3+...+99.100-99\)

\(N=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)\)

Đặt \(\left\{{}\begin{matrix}A=1.2+2.3+3.4+...+99.100\\B=1+2+3+...+99\end{matrix}\right.\)

+) Tính \(A=1.2+2.3+3.4+...+99.100\)

Ta có:

\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3\)

\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)

\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)

\(3A=99.100.101\)

\(\Rightarrow A=\dfrac{99.100.101}{3}=333300\)

+) Tính \(B=1+2+3+...+99\)

\(B\) có số số hạng là: \(\dfrac{99-1}{1}\) + 1 = 99 (số hạng)

\(\Rightarrow B=\dfrac{\left(99+1\right).99}{2}=4950\)

\(\Rightarrow N=A-B=333300-4950=328350\)

\(\Rightarrow N=328350\)

 

 

M=1/4(4/1*5+8/5*13+12/13*15+16/25*41)

=1/4(1-1/5+1/5-1/13+...+1/25-1/41)

=1/4*40/41=10/41

N=1/3(6/1*7+9/7*16+...+18/43*61)

=1/3(1-1/7+...+1/43-1/61)

=1/3*60/61=20/41

=>M<N

16 tháng 7 2017

Ta có ; K = \(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{1}{45}\)

\(=1+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{90}\)

\(=1+\left(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+.....+\frac{2}{9.10}\right)\)

\(=1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{9.10}\right)\)

\(=1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{9}-\frac{1}{10}\right)\)

\(=1+2\left(\frac{1}{2}-\frac{1}{10}\right)\)

\(=1+1-\frac{1}{5}\)(nhân phá ngoặc)

\(=2-\frac{1}{5}\)< 2 

Vậy K = \(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{1}{45}\)< 2

8 tháng 7 2023

a) \(2^n=8\)

\(\Rightarrow2^n=2^3\)

\(\Rightarrow n=3\)

b) \(5^{n+1}=125\)

\(\Rightarrow5^{n+1}=5^3\)

\(\Rightarrow n+1=3\)

\(\Rightarrow n=3-1=2\)

c) Mình không rõ đề:

d) \(2\cdot7^{n-1}+3=101\)

\(\Rightarrow2\cdot7^{n-1}=101-3\)

\(\Rightarrow2\cdot7^{n-1}=98\)

\(\Rightarrow7^{n-1}=\dfrac{98}{2}\)

\(\Rightarrow7^{n-1}=49\)

\(\Rightarrow7^{n-1}=7^2\)

\(\Rightarrow n-1=2\)

\(\Rightarrow n=1+2=3\)

e) \(3\cdot5^{2n+1}-6^2=339\)

\(\Rightarrow3\cdot5^{2n+1}=339+36\)

\(\Rightarrow3\cdot5^{2n+1}=375\)

\(\Rightarrow5^{2n+1}=125\)

\(\Rightarrow5^{2n+1}=5^3\)

\(\Rightarrow2n+1=3\)

\(\Rightarrow2n=2\)

\(\Rightarrow n=\dfrac{2}{2}=1\)

14 tháng 7 2017

Ta có : \(M=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+.....+\frac{4}{95.99}\)

\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+......+\frac{1}{95}-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}\)

\(=\frac{32}{99}\)

10 tháng 1 2016

1) chọn D

2)a) <=> n+1=0 hoặc n+3=0 <=> n=-1 hoặc n=-3

   b)<=>/n/+2=0 hoặc n^2-1=0 

      <=>x=1 hoặc x=-1

tik cho mk nha