So sánh:
a,\(2^{225}\)và\(3^{150}\)
b,\(2^{91}\)và\(5^{35}\)
c,\(2^{332}\)và\(3^{223}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
Ta có :
\(2^{255}=\left(2^{17}\right)^{15}\) \(>\left(2^{16}\right)^{15}=\left(2^8\right)^{30}=256^{30}\)
\(3^{150}=\left(3^{10}\right)^{15}=\left(3^5\right)^{30}=243^{30}\)
\(\text{Vì }256^{30}>243^{30}\text{ }\Rightarrow\text{ }2^{255}>3^{150}\)
Ta có:
\(C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-\frac{99}{100}\)
\(C=\frac{-49}{50}\)
\(2^{91}=\left(2^{13}\right)^7=73728^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\) nhỏ hơn \(73728^7\)
\(\Rightarrow2^{91}\) lớn hơn \(5^{35}\)
\(b,3^{400}=\left(3^4\right)^{100}=81^{100}\\ 4^{300}=\left(4^3\right)^{100}=64^{100}\\ Vì:81^{100}>64^{100}\left(Do:81>64\right)\\ \Rightarrow3^{400}>4^{300}\)
a) ta có: 2225 = (23)75 = 875
3150 = (32)75 = 975 > 875
=> ...
b) ta có: 291 > 275 = (23)25 = 825 > 325
=> ...
c) ta có: 278 = (33)8 = 324
814 = (34)4 = 316 < 324
=>...
d)ta có: 2332 < 2333 = (23)111 = 8111
3223 > 3222 = (32)111 = 9111 > 8111
=>...
e)C1: ta có: 92000 = (32)2000 = 34000
C2: ta có: 34000 = (32)2000 = 92000
\(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(3^{150}=\left(3^2\right)^{75}=9^{75}\)
\(8< 9=>....\)
a) Ta có :
\(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(3^{150}=\left(3^2\right)^{75}=9^{75}\)
Mà 8^75 < 9^75 => 2^225<3^150
b) Ta có
2^91=(2^13)^7=8192^7
3^35=(3^5)^7=243^7
mà 8192^7<243^7=> 2^91<3^35
c) 3^4000=(3^2)^2000=9^2000
d) 2^332 < 2^333=2^3^111=8^111
3^223>3^222=9^111
=>2^332<3^223
2|}}dasKJLFDJHLSKAfhsdklfjdlsa;fjdsafjdsa;fjdsl;fjlsa;fjadskljfdlfjdskfjl;+)2349890432483085439-
a, Ta có:
\(2^{225}=2^{3.75}=\left(2^3\right)^{75}=8^{75}\)
\(3^{150}=3^{2.75}=\left(3^2\right)^{75}=9^{75}\)
Vì \(8^{75}< 9^{75}\)nên \(2^{225}< 3^{150}\)
b, Ta có:
\(2^{91}=2^{13.7}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=5^{5.7}=\left(5^5\right)^7=3125^7\)
Vì \(8192^7>3125^7\)nên \(2^{91}>5^{35}\)
a,2^91=2^85.2^6
=(2^5)^17.64
=32^17.64
5^35=5^34.5
=25^17.5
Có 32^17>25^17;64>5
Nên 2^91>5^35
a) \(2^{225}\)= \(\left(2^3\right)^{75}\)= \(8^{75}\)
\(3^{150}\)= \(\left(3^2\right)^{75}\)= \(9^{75}\)
Vì \(8^{75}\)< \(9^{75}\)
Nên \(2^{225}\)< \(3^{150}\)
b) \(2^{332}\)< \(2^{333}\)= \(\left(2^3\right)^{11}\)= \(8^{11}\)
\(3^{223}\)> \(3^{222}\)= \(\left(3^2\right)^{11}\)= \(9^{11}\)
Vì \(8^{11}\)< \(9^{11}\)
Nên : \(2^{332}\)< \(3^{223}\)
a, \(2^{225}=\left(2^3\right)^{75}=8^{75}\) và \(3^{150}=\left(3^2\right)^{75}=9^{75}\)
Vì \(9>8\) nên \(9^{75}>8^{75}\)
Vậy \(2^{225}>3^{150}\)
b, \(2^{91}=\left(2^{13}\right)^7=8192^7\) và \(5^{35}=\left(5^5\right)^7=3125^7\)
Vì 8192 > 3125 nên \(8192^7>3125^7\)
Vậy \(2^{91}>5^{35}\)