Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có :
\(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(3^{150}=\left(3^2\right)^{75}=9^{75}\)
Mà 8^75 < 9^75 => 2^225<3^150
b) Ta có
2^91=(2^13)^7=8192^7
3^35=(3^5)^7=243^7
mà 8192^7<243^7=> 2^91<3^35
c) 3^4000=(3^2)^2000=9^2000
d) 2^332 < 2^333=2^3^111=8^111
3^223>3^222=9^111
=>2^332<3^223
2|}}dasKJLFDJHLSKAfhsdklfjdlsa;fjdsafjdsa;fjdsl;fjlsa;fjadskljfdlfjdskfjl;+)2349890432483085439-
bài 4 : c1 \(3^{4000}\)và \(9^{2000}\)
\(\Leftrightarrow9^{2000}\Leftrightarrow\left(3^2\right)^2^{000}\Leftrightarrow3^{4000}\)
vì \(3^{4000}=3^{4000}\Leftrightarrow3^{4000}=9^{2000}\)
c2
ta có
\(3^{4000}=\left(3^4\right)^{1000}=81^{1000}\)
\(9^{2000}=\left(9^2\right)^{1000}=81^{1000}\)
vì \(81^{1000}=81^{1000}\Leftrightarrow3^{4000}=9^{2000}\)
bài 5
\(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)
vì \(8^{111}< 9^{111}\Leftrightarrow2^{332}< 3^{223}\)
3) M = 22010 - (22009 + 22008 + .... + 21 + 20)
Đặt N = 22009 + 22008 + .... + 21 + 20
=> 2N = 22010 + 22009 + .... + 22 + 21
=> 2N - N = (22010 + 22009 + .... + 22 + 21) - (22009 + 22008 + .... + 21 + 20)
=> N = 22010 - 1
Khi đó M = 22010 - (22010 - 1) = 1
4) C1 Ta có 34000 = (34)1000 = 811000 = (92)1000 = 92000
34000 = 92000
C2 Ta có : 34000 = (34)1000 = 811000 (1)
Lại có 92000 = (92)1000 = 811000 (2)
Từ (1) (2) => 34000 = 92000
5 Ta có 2332 < 2333 = (23)111 = 8111 < 9111 = (32)111 = 3222 < 3223
=> 2332 < 3223
2) Ta có n150 < 5225
=> (n5)75 < (53)75
=> n5 < 53
=> n5 < 125
Vì n là số nguyên lớn nhất => n = 2
a) \(2^{91}\)và \(5^{35}\)
Ta có :
\(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
Vì \(8192^7>3125^7\)nên \(2^{91}>5^{35}\)
b) \(3^{4000}\)và \(9^{2000}\)
Ta có :
\(3^{4000}=\left(3^4\right)^{1000}=81^{1000}\)
\(9^{2000}=\left(9^2\right)^{1000}=81^{1000}\)
Vì \(81^{1000}=81^{1000}\)nên \(3^{4000}=9^{2000}\)
\(2^{91}\)và \(5^{35}\)
Ta có :
\(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
Vì \(8192>3125\)nên \(2^{91}>5^{35}\)
\(3^{4000}\)và \(9^{2000}\)
Ta có :
\(3^{4000}=\left(3^4\right)^{1000}=81^{1000}\)
\(9^{2000}=\left(9^2\right)^{1000}=81^{1000}\)
Vì \(81=81\)nên \(3^{4000}=9^{2000}\)
a) 291 và 535
ta có: 291 < 290 = (25)18 = 3218
lại có: 3218 > 2518 = (52)18 = 536 > 535
vậy 291 > 535
b) 34000 và 92000
ta có: 34000 = (34)1000 = 811000
92000 = (92)1000 = 811000
vậy 34000 = 92000
c) 2332 và 3223
ta có: 2332 < 2333 = (23)111 = 8111
3223 > 3222 = (32)111 = 9111
mà 8111 < 9111
vậy 2332 < 3223
a) 291 và 535
Ta có: 291 < 290 = (25)18 = 3218
Lại có: 3218 > 2518 = (52)18 = 536 > 535
Vậy 291 > 535
b) 34000 và 92000
Ta có: 34000 = (34)1000 = 811000
92000 = (92)1000 = 811000
Vậy 34000 = 92000
c) 2332 và 3223
Ta có: 2332 < 2333 = (23)111 = 8111
3223 > 3222 = (32)111 = 9111
Mà 8111 < 9111
Vậy 2332 < 3223
\(2^{91}=\left(2^{13}\right)^7=73728^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\) nhỏ hơn \(73728^7\)
\(\Rightarrow2^{91}\) lớn hơn \(5^{35}\)
\(b,3^{400}=\left(3^4\right)^{100}=81^{100}\\ 4^{300}=\left(4^3\right)^{100}=64^{100}\\ Vì:81^{100}>64^{100}\left(Do:81>64\right)\\ \Rightarrow3^{400}>4^{300}\)
Bài giải
Ta có :
\(2^{255}=\left(2^{17}\right)^{15}\) \(>\left(2^{16}\right)^{15}=\left(2^8\right)^{30}=256^{30}\)
\(3^{150}=\left(3^{10}\right)^{15}=\left(3^5\right)^{30}=243^{30}\)
\(\text{Vì }256^{30}>243^{30}\text{ }\Rightarrow\text{ }2^{255}>3^{150}\)
b/ Ta có: 291>290=(25)18=3218>2518=(52)18=536>535 => 291>535
c/ Ta có: 2225=(23)75=875
3150=(32)75=975
Vì 875<975 nên 2225<3150
a)Ta có: 2^27=(2^3)^9=8^9
3^18=(3^2)^9=9^9
Vì 8^9 <9^9
2^27<3^18
d)Ta có :27^7=(3^3)^7=3^21
9^12=(3^2)^12=3^24
Vì 3^21<3^24
27^7<9^12
a) ta có: 2225 = (23)75 = 875
3150 = (32)75 = 975 > 875
=> ...
b) ta có: 291 > 275 = (23)25 = 825 > 325
=> ...
c) ta có: 278 = (33)8 = 324
814 = (34)4 = 316 < 324
=>...
d)ta có: 2332 < 2333 = (23)111 = 8111
3223 > 3222 = (32)111 = 9111 > 8111
=>...
e)C1: ta có: 92000 = (32)2000 = 34000
C2: ta có: 34000 = (32)2000 = 92000
\(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(3^{150}=\left(3^2\right)^{75}=9^{75}\)
\(8< 9=>....\)