tìm các số nguyên dương a và b sao cho 2/a+1/b=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
a3 + (b + 1)2
a3 + 1 = (b + 1).(b + 1)
a3 + 1 = b2 + b + b + 1
=> a3 = b2 + 2b
=> a3 = b.(b + 2)
=> a.a2 = b.(b + 2)
Do a,b nguyên dương => a,b khác 0 => a = b; a2 = b + 2 vì nếu a khác b, a2 khác b + 2 thì không có trường hợp nào thỏa mãn
=> a = b = 2
Lời giải:
$3^a+1=(b+1)^2$
$\Rightarrow 3^a+1=b^2+2b+1$
$\Rightarrow 3^a=b^2+2b=b(b+2)$
Đặt $b=3^m, b+2=3^n$ với $m,n$ là hai số tự nhiên, $m+n=a$
Ta có:
$b=3^m, b+2=3^n$
$\Rightarrow 2=3^n-3^m$
Nếu $m,n$ cùng lớn hơn $0$ thì $3^n-3^m\vdots 3$. Mà $2\not\vdots 3$ nên loại
$\Rightarrow$ trong 2 số $m,n$ có ít nhất 1 số bằng $0$.
Mà $n>m$ nên $m=0$.
Khi đó:
$3^n-3^m=3^n-3^0=2\Rightarrow 3^n=3\Rightarrow n=1$
$\Rightarrow a=m+n=0+1=1$
$(b+1)^2=3^a+1=3^1+1=4$
$\Rightarrow b+1=2$
$\Rightarrow b=1$
Vậy.......
dễ làm
1:5/6va 1/8
2:55 va 99
3:3 va 7
mình làm rồi bạn ạ,mình mới học sag ny, cho minh nha
a; Đặt A= \(a^{2017}+a^{2015}+1\)
\(=a^4\left(a^{2013}-1\right)+a^2\left(a^{2013}-1\right)+a^4+a^2+1\)=\(a^4\left(\left(a^3\right)^{671}-1\right)+a^2\left(\left(a^3\right)^{671}-1\right)+\left(a^2+a+1\right)\left(a^2-a+1\right)\)
= \(\left(a^2+a+1\right)F\left(a\right)\) (trong đó F(a) là đa thức chứa a)
\(\Rightarrow A\) chia hết cho \(a^2+a+1\)
do \(a^2+a+1\) > 1 (dễ cm đc)
mà A là số nguyên tố
\(\Rightarrow A=a^2+a+1\)
hay \(a^{2017}+a^{2015}+1=a^2+a+1\)
\(\Leftrightarrow a\left(a\left(a^{2015}-1\right)+\left(a^{2014}-1\right)\right)=0\)
\(\Leftrightarrow a\left(a-1\right).G\left(a\right)=0\) ( bạn đặt nhân tử chung ra)
do a dương => a>0 => a-1=0=> a=1(t/m)
Kết Luận:...
chỗ nào bạn chưa hiểu cứ nói cho mình nha :3
\(\dfrac{2}{a}\) + \(\dfrac{1}{b}\) = 1⇔ \(\dfrac{1}{b}\) = 1 - \(\dfrac{2}{a}\)
⇔ b = 1 : ( 1-\(\dfrac{2}{a}\))
b ϵ Z+ ⇔ 1 -2/a = 1
1 -2/a = 1 ⇔ 2/a = 0 vô lý
không có giá trị nào của a, b ϵ Z+ thỏa mãn đề bài
\(\dfrac{2}{a}+\dfrac{1}{b}=1\)
\(\Leftrightarrow\dfrac{2}{a}+\dfrac{1}{b}-1=0\)
\(\Leftrightarrow\dfrac{2+1-ab}{ab}=0\)
\(\Leftrightarrow3-ab=0\)
\(\Leftrightarrow ab=3=1.3=3.1\)
Vậy a = 1 ; b = 3 hoặc a = 3 ; b = 1