Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài cuối có Max nữa nhé, cần thì ib mình làm cho.
Giả sử \(c=min\left\{a;b;c\right\}\Rightarrow c\le1< 2\Rightarrow2-c>0\)
Ta có:\(P=ab+bc+ca-\frac{1}{2}abc=\frac{ab}{2}\left(2-c\right)+bc+ca\ge0\)
Đẳng thức xảy ra tại \(a=3;b=0;c=0\) và các hoán vị
Ta có : \(P=a^2\left(b+c\right)+b^2\left(a+c\right)+c^2\left(a+b\right)=\left(a+b\right)\left(b+c\right)\left(c+a\right)-2abc\)
Gỉa sử : \(\left(a+b\right);\left(b+c\right);\left(c+a\right)\)là 3 số lẻ \(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\)lần lượt bằng \(2x+1;2y+1;2z+1\left(x;y;z\in N\right)\)
\(\Rightarrow a+b+b+c+c+a=2\left(a+b+c\right)=2\left(x+y+z\right)+3⋮2\)( vô lí )
Suy ra tồn tại 1 số chẵn trong 3 số \(\left(a+b\right);\left(b+c\right);\left(c+a\right)\)
\(\Rightarrow x⋮2\Leftrightarrow x=2\)
Đưa bài toán về tìm số tự nhiên \(a,b,c\)sao cho \(\left(a+b\right);\left(b+c\right);\left(c+a\right)\)
\(\Leftrightarrow2abc+2=\left(a+b\right);\left(b+c\right);\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
Tiếp tục sử dụng bất đẳng thức \(\left(a+b+c\right)\left(ab+ca+ca\right)\ge9abc\)
\(\Rightarrow2abc+2\ge8abc\Leftrightarrow abc\le\frac{1}{3}\)
\(\Rightarrow abc=0\)nên tồn tại 1 số 0 ( nếu tồn tại 2 số thì \(x=0\)nên loại )
Gỉa sử \(c=0\Rightarrow x=ab\left(a+b\right)=2\Leftrightarrow a=b=1\)
Vậy \(\left(a,b,c\right)=\left(1,1,0\right)\)và hoán vị thì x là số nguyên tố