Cho x/y=1/2 và x khác 3y. Tính x+3y/x-3y. Giúp mình vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\dfrac{x}{-4}=\dfrac{y}{-7}=\dfrac{z}{3}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=-4k\\y=-7k\\z=3k\end{matrix}\right.\)
\(\Rightarrow A=\dfrac{-2.\left(-4k\right)+\left(-7k\right)+5.3k}{-4k-3.\left(-7k\right)-6.3k}=\dfrac{16k}{-1k}=-16\)
\(\dfrac{x+2y}{4x-3y}=-2\)
=>x+2y=-8x+6y
=>9x=4y
hay x/y=4/9
1)
xy + x - 4y = 12
x + y(x - 4) = 12
y(x - 4) = 12 - x
\(y=\dfrac{-x+12}{x-4}\)
Vì \(x,y\inℕ\) nên
\(\left(-x+12\right)⋮\left(x-4\right)\)
\(\left(-x+12\right)-\left(x-4\right)⋮\left(x-4\right)\)
\(16⋮\left(x-4\right)\)
\(\left(x-4\right)\inƯ\left(16\right)\)
\(\left(x-4\right)\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
\(x\in\left\{5;3;6;2;8;0;12;-4;20;-12\right\}\)
\(y\in\left\{\dfrac{-5+12}{5-4};\dfrac{-3+12}{3-4};\dfrac{-6+12}{6-4};\dfrac{-2+12}{2-4};\dfrac{-8+12}{8-4};\dfrac{-0+12}{0-4};\dfrac{-12+12}{12-4};\dfrac{4+12}{-4-4};\dfrac{-20+12}{20-4};\dfrac{12+12}{-12-4}\right\}\)
\(y\in\left\{7;-9;3;-5;1;-3;0;-2;-\dfrac{1}{2};-\dfrac{7}{5}\right\}\)
\(\left(x;y\right)\in\left\{\left(5;7\right);\left(3;-9\right);\left(6;3\right);\left(2;-5\right);\left(8;1\right);\left(0;-3\right);\left(12;0\right);\left(-4;-2\right);\left(20;-\dfrac{1}{2}\right);\left(-12;-\dfrac{7}{5}\right)\right\}\)
Mà \(x,y\inℕ\) nên các giá trị cần tìm là \(\left(x;y\right)\in\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\)
2)
(2x + 3)(y - 2) = 15
\(\left(2x+3\right)\inƯ\left(15\right)\)
\(\left(2x+3\right)\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)
Ta lập bảng
2x + 3 | 1 | -1 | 3 | -3 | 5 | -5 | 15 | -15 |
y - 2 | 15 | -15 | 5 | -5 | 3 | -3 | 1 | -1 |
(x; y) | (-1; 17) | (-2; -13) | (0; 7) | (-3; -3) | (1; 5) | (-4; -1) | (6; 3) | (-9; 1) |
Mà \(x,y\inℕ\) nên các giá trị cần tìm là \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\)
1; \(x^2\) + 3\(x^2\) + 3\(x\) = 4\(x^2\) + 3\(x\) (1)
Thay \(x=99\) vào (1) ta có:
4.992 + 3.99 = 4.9801 + 297 = 39204 + 297 = 39501
a, \(A+B=x^2-2x-y^2+3y-1+\left(-2x^2+3y^2-5z+3\right)\)
\(=x^2-2x-y^2+3y-1-2x^2+3y^2-5z+3\)
\(=-x^2-2x+2y^2+3y-5z+2\)
b, \(A-B=x^2-2x-y^2+3y-1-\left(-2x^2+3y^2-5z+3\right)\)
\(=x^2-2x-y^2+3y-1+2x^2-3y^2+5z-3\)
\(=3x^2-2x-4y^2+3y+5z-4\)
c, Thay x=-2,y=1 vào biểu thức A-B ta được:
\(A-B=3.\left(-2\right)^2-2.\left(-2\right)-4.1^2+3.1+5z-4=12+4-4+3+5z-4=11+5z\)
\(A=x^2-2x-y^2+3y-1\)
\(B=-2x^2+3y^2-5z+3\)
a) A+B =
\(\left(x^2-2x-y^2+3y-1\right)+\left(-2x^2+3y^2-5z+3\right)\)
\(=\left(x^2-2x^2\right)-\left(y^2+3y^2\right)-2x+3y-5z-1+3\)
\(=-x^2-4y^2-2x+3y-5z-1+3\)
\(=\left(-1-4-2+3-5-1+3\right).\left(x^2-x\right).y^2.z\)
\(=-7xy^2z\)
b ) Tính A-B ( tương tự A+B )
C) Thay x=-2 và y=1 vào biểu thức ta có :
\(-7xy^2z\)
\(=-7.-2.1.z\)
\(=14z\)
\(\frac{x^2-3y}{x\left(1-3y\right)}=\frac{y^2-3x}{y\left(1-3x\right)}\)
\(\Rightarrow\left(x^2-3y\right)\left(y-3xy\right)=\left(y^2-3x\right)\left(x-3xy\right)\)
\(\Leftrightarrow x^2y-3x^3y-3y^2+9xy^2=xy^2-3xy^3-3x^2+9x^2y\)
\(\Leftrightarrow-3xy\left(x+y\right)\left(x-y\right)+3\left(x+y\right)\left(x-y\right)-8xy\left(x-y\right)=0\)
\(\Leftrightarrow3\left(x+y\right)-3xy\left(x+y\right)-8xy=0\)(vì \(x\ne y\))
\(\Leftrightarrow\frac{x+y}{xy}=x+y+\frac{8}{3}\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=x+y+\frac{8}{3}\)
\(a)\) Ta có :
\(\frac{x}{18}=\frac{y}{9}\)\(\Leftrightarrow\)\(\frac{x}{2}=y\)
\(\Rightarrow\)\(x=2y\)
Thay \(x=2y\) vào \(A=\frac{2x-3y}{2x+3y}\) ta được :
\(A=\frac{2.2y-3y}{2.2y+3y}=\frac{4y-3y}{4y+3y}=\frac{y}{7y}=\frac{1}{7}\)
Vậy ... ( tự kết luận )
Chúc bạn học tốt ~
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{z}{2}=\dfrac{2x+3y+4z}{2\cdot5+3\cdot2+4\cdot2}=\dfrac{54}{24}=\dfrac{9}{4}\)
Do đó: \(\left\{{}\begin{matrix}x=\dfrac{45}{4}\\y=\dfrac{9}{2}\\z=\dfrac{9}{2}\end{matrix}\right.\)
x/y=1/2 => x=1/2y
=> x+3y/x-3y = 1/2y+3y / 1/2y-3y = 3,5y/-2,5y = 3,5/-2,5 = 0,7/-0,5
`x/y =1/2 -> 2x =y`
Khi đó :
`(x+3y)/(x-3y) = (x + 3 . 2x)/(x - 3 . 2x) = (7x)/(-5x) = -7/5`