Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,-2xy^2\left(x^3y-2x^2y^2+5xy^3\right)\\ =-2x^4y^3+4x^3y^4-10x^2y^5\\ b,\left(-2x\right)\left(x^3-3x^2-x+1\right)\\ =-2x^4+6x^3+2x^2-2x\\ c,\left(-10x^3+\dfrac{2}{5}y-\dfrac{1}{3}z\right)\left(-\dfrac{1}{2}zy\right)\\ =5x^3yz-\dfrac{1}{5}y^2z+\dfrac{1}{6}yz^2\\ d,3x^2\left(2x^3-x+5\right)=6x^5-3x^3+15x^2\\ e,\left(4xy+3y-5x\right)x^2y=4x^3y^2+3x^2y^2-5x^3y\\ f,\left(3x^2y-6xy+9x\right)\left(-\dfrac{4}{3}xy\right)\\ =-4x^3y^2+8x^2y^2-12x^2y\)
a) \(x^2+2xy^3-3z+4xy-5xy^2+2xy-5z\)
\(=x^2+2xy^3-5xy^2-\left(3z+5z\right)+\left(4xy+2xy\right)\)
\(=x^2+2xy^3-5xy^2-8z+6xy\)
b) \(\left(x-3y\right)\left(x^2-3xy+9y^2\right)\)
\(=\left(x-3y\right)\left[x^2-x\cdot3y+\left(3y\right)^2\right]\)
\(=x^3-\left(3y\right)^3\)
\(=x^3-27y^3\)
c) \(\left(2x-y\right)\left(2x+y\right)\)
\(=\left(2x\right)^2-y^2\)
\(=4x^2-y^2\)
d) \(\left(3x-y\right)\left(2y+5\right)-16x4y\)
\(=6xy+15x-2y^2-5y-64xy\)
\(=-58xy+15x-2y^2-5y\)
a) Xem lại đề
b) x³ - 4x²y + 4xy² - 9x
= x(x² - 4xy + 4y² - 9)
= x[(x² - 4xy + 4y² - 3²]
= x[(x - 2y)² - 3²]
= x(x - 2y - 3)(x - 2y + 3)
c) x³ - y³ + x - y
= (x³ - y³) + (x - y)
= (x - y)(x² + xy + y²) + (x - y)
= (x - y)(x² + xy + y² + 1)
d) 4x² - 4xy + 2x - y + y²
= (4x² - 4xy + y²) + (2x - y)
= (2x - y)² + (2x - y)
= (2x - y)(2x - y + 1)
e) 9x² - 3x + 2y - 4y²
= (9x² - 4y²) - (3x - 2y)
= (3x - 2y)(3x + 2y) - (3x - 2y)
= (3x - 2y)(3x + 2y - 1)
f) 3x² - 6xy + 3y² - 5x + 5y
= (3x² - 6xy + 3y²) - (5x - 5y)
= 3(x² - 2xy + y²) - 5(x - y)
= 3(x - y)² - 5(x - y)
= (x - y)[(3(x - y) - 5]
= (x - y)(3x - 3y - 5)
a: M=2(-2x-3xy^2+1)-3xy^2+1
=-4x-6xy^2+2-3xy^2+1
=-4x-9xy^2+3
b: Thay x=-2 và y=3 vào M, ta được:
M=2*(-2)-3*(-2)*3^2+1
=-4+1+6*9
=54-3
=51
1/x^3 - 2x^2 - 9x + 18
= x\(^2\)( x - 2 ) - 9 ( x - 2 ) = ( x\(^2\) - 9 ) ( x - 2 )= ( x - 3 ) ( x +3 ) ( x - 2 )
2/3x^2 -5x - 3y^2 + 5y
= 3( x\(^2\) - y\(^2\) ) - 5 ( x - y ) = 3 ( x - y ) ( x + y ) - 5 ( x - y ) = ( x - y ) [ 3( x+ y ) - 5 ]
= ( x - y ) ( 3x + 3y - 5 )
3/49 - x^2 + 2xy - y^2
= 49 - ( x\(^2\) - 2xy + y\(^2\) ) = 49 - ( x - y )\(^2\) = ( 7 - x + y ) ( 7 + x - y )
5/ x^2 - 4x^2y^2 + 2xy
= x ( x - 4xy\(^2\) + 2y )
6/ 3x - 3y - x^2 + 2xy - y^2
= ( 3x - 3y ) - ( x\(^2\) - 2xy + y\(^2\) ) = 3 ( x - y ) - ( x - y )\(^2\) = ( x - y ) ( 3 - x + y )
a) \(3x^2-3xy-5x+5y\)
\(=\left(3x^2-3xy\right)-\left(5x-5y\right)\)
\(=3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(3x-5\right)\)
b) \(2x^3y-2xy^3-4xy^2-2xy\)
\(=2xy\left(x^2-y^2-2y-1\right)\)
\(=2xy\left[x^2-\left(y^2+2y+1\right)\right]\)
\(=2xy\left[x^2-\left(y+1\right)^2\right]\)
\(=2xy\left(x-y-1\right)\left(x+y+1\right)\)
c) \(x^2+1+2x-y^2\)
\(=\left(x^2+2x+1\right)-y^2\)
\(=\left(x+1\right)^2-y^2\)
\(=\left(x+1+y\right)\left(x+1-y\right)\)
d) \(x^2+4x-2xy-4y+y^2\)
\(=\left(x^2-2xy+y^2\right)+\left(4x-4y\right)\)
\(=\left(x-y\right)^2+4\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y+4\right)\)
e) \(x^3-2x^2+x\)
\(=x\left(x^2-2x+1\right)\)
\(=x\left(x-1\right)^2\)
f) \(2x^2+4x+2-2y^2\)
\(=2\left(x^2+2x+1-y^2\right)\)
\(=2\left[\left(x^2+2x+1\right)+y^2\right]\)
\(=2\left[\left(x+1\right)^2-y^2\right]\)
\(=2\left(x-y+1\right)\left(x+y+1\right)\)
a: =3x(x-y)-5(x-y)
=(x-y)(3x-5)
b: \(=2xy\left(x^2-y^2-2y-1\right)\)
\(=2xy\left[x^2-\left(y^2+2y+1\right)\right]\)
\(=2xy\left(x-y-1\right)\left(x+y+1\right)\)
d:
Sửa đề: x^2+4x-2xy-4y+y^2
=x^2-2xy+y^2+4x-4y
=(x-y)^2+4(x-y)
=(x-y)(x-y+4)
e: =x(x^2-2x+1)
=x(x-1)^2
f: =2(x^2+2x+1-y^2)
=2[(x+1)^2-y^2]
=2(x+1+y)(x+1-y)