Tìm x thuộc Z thỏa mái điều kiện sau : ( x2 - 5 ) ( x2 - 36 ) nhỏ hơn 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x 2 - 3x + m - 5 = 0
a = 1; b = -3; c = m – 5
Δ = b 2 - 4ac = - 3 2 - 4(m - 5) = 29 - 4m
Phương trình có 2 nghiệm phân biệt x 1 ; x 2 khi và chỉ khi
Δ > 0 ⇔ 29 - 4m > 0 ⇔ m < 29/4
Theo định lí Vi-et ta có:
x 1 ; x 2 = c/a = m - 5
Theo bài ra
x 1 ; x 2 = 4 ⇔ m - 5 = 4 ⇔ m = 9 (Không TMĐK m < 29/4)
Vậy không tồn tại m thỏa mãn đề bài.
a: Để phương trình có nghiệm thì (-2)^2-4(m-3)>=0
=>4-4m+12>=0
=>-4m+16>=0
=>-4m>=-16
=>m<=4
b: x1-x2=4
x1+x2=2
=>x1=3; x2=-1
x1*x2=m-3
=>m-3=-3
=>m=0(nhận)
Lời giải:
Sửa: $x^2\geq y^2+z^2$
Áp dụng BĐT Cauchy-Schwarz:
$P\geq \frac{y^2+z^2}{x^2}+\frac{7x^2}{2}.\frac{4}{y^2+z^2}+2007$
$=\frac{y^2+z^2}{x^2}+\frac{14x^2}{y^2+z^2}+2007$
$=\frac{y^2+z^2}{x^2}+\frac{x^2}{y^2+z^2}+\frac{13x^2}{y^2+z^2}+2007$
$\geq 2+\frac{13x^2}{y^2+z^2}+2007$ (áp dụng BĐT Cô-si)
$\geq 2+13+2007=2022$ (do $x^2\geq y^2+z^2$)
Vậy $P_{\min}=2022$
\(x^2\) - 3\(x\) - 4 = 0
(\(x^2\) + \(x\)) - (4\(x\) + 4) = 0
\(x\).(\(x\) + 1) - 4.(\(x\) + 1) = 0
(\(x\) + 1).(\(x\) - 4) = 0
\(\left[{}\begin{matrix}x+1=0\\x-4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-1\\x=4\end{matrix}\right.\)
Vậy \(x\in\) {-1; 4}
x=-5;-4;-3;3;4;5
Trình bày cách làm đi