Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4.
\(\left|x-1\right|+\left|y-2\right|+\left(z-x\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-2=0\\z-x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=z=1\\y=2\end{cases}}\)
Bài 3.
\(\left|x-1\right|+\left|2x-2\right|+\left|4x-4\right|+\left|5x-5\right|=36\)
\(\Leftrightarrow\left|x-1\right|+2\left|x-1\right|+4\left|x-1\right|+5\left|x-1\right|=36\)
\(\Leftrightarrow12\left|x-1\right|=36\)
\(\Leftrightarrow\left|x-1\right|=3\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=3\\x-1=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=-2\end{cases}}\)
2x-3y+4z=5
=>2x-3y-4.(-3x-3y-3)=5
14x+9y=-17
14x+9.(-8x:7+1)=-17
26x:7=-26
26x=-26.7
26x=-182
x=-182:26
x=-7
mình chỉ làm đc z thôi ko biết có đ ko.
- Theo đề bài,ta có:
\(\frac{2}{x}=\frac{3}{y}=\frac{1}{z}\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{1}\)
a) Theo đề bài, ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{1}\) và 2x-3y+4z
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{1}=\frac{2x-3y+4z}{2.2-3.3+4.1}=\frac{5}{-1}=-5\)
- \(\frac{x}{2}=\left(-5\right).2=-10\)
- \(\frac{y}{3}=\left|\left(-5\right).3=-15\right|\)
- \(\frac{z}{1}=\left(-5\right).1=-5\)
Vậy x=-10,y=-15,z=-5
b) Theo đề bài, ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{1}=\frac{x^2.y^2.z^2}{2^2.3^2.1^2}=\frac{36}{36}=1\)
Áp dụng tính chất của dãy tỉ só bằng nhau:
- \(\frac{x}{2}=1.2=2\)
- \(\frac{y}{3}=1.3=3\)
- \(\frac{z}{1}=1.1=1\)
Vậy x=2,y=3,z=1.
^...^ ^_^
(x2 - 50)(x2 - 16) < 0
⇒ 2 số trái dấu
mặt khác x2 - 50 < x2 - 16
⇒ x2 - 50 âm ⇒ x2 < 50
x2 - 16 dương ⇒ x2 > 16
mà x nguyên âm ⇒ -5 ≥ x ≥ -7
x=-5;-4;-3;3;4;5
Trình bày cách làm đi