Tam giác ABC cân ở A, đường cao BH. C/m \(AB^2+AC^2+CB^2=3BH^2+2AH^2+CH^2\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
DL
0
27 tháng 1 2018
A B C H K
Từ C kẻ CK vuông góc AB.
Dễ dàng chứng minh được \(\Delta\)BHA=\(\Delta\)CKA (Cạnh huyền . Góc nhọn)
=> BH=CK và AH=AK
Ta có: AB2+AC2+BC2=AH2+BH2+AK2+CK2+CH2+BH2
Thay CK=BH và AK=AH; ta được:
AB2+AC2+BC2=AH2+BH2+AH2+BH2+CH2+BH2=3.BH2+2.AH2+CH2 (đpcm).
RM
1
12 tháng 8 2022
\(3BH^2+2\cdot AH^2+CH^2\)
\(=BH^2+CH^2+2\cdot BH^2+2\cdot AH^2\)
\(=BC^2+2\cdot AB^2\)
\(=BC^2+AB^2+AC^2\)