Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H K
Từ C kẻ CK vuông góc AB.
Dễ dàng chứng minh được \(\Delta\)BHA=\(\Delta\)CKA (Cạnh huyền . Góc nhọn)
=> BH=CK và AH=AK
Ta có: AB2+AC2+BC2=AH2+BH2+AK2+CK2+CH2+BH2
Thay CK=BH và AK=AH; ta được:
AB2+AC2+BC2=AH2+BH2+AH2+BH2+CH2+BH2=3.BH2+2.AH2+CH2 (đpcm).
Phần c đơn giản lắm :) Vừa nghĩ ra tiếp :
Ta có :
- \(4.\left(S_{ABC}\right)^2=\left(2.S_{ABC}\right)^2\)
\(\Rightarrow\left(AB.AC\right)^2=\left(AH.BC\right)^2\)
\(\Rightarrow AB^2.AC^2=AH^2.BC^2\)
Mà \(BC^2=AB^2+AC^2\)( Pythagores )
\(\Rightarrow AB^2.AC^2=AH^2\left(AB^2+AC^2\right)\)
\(\Rightarrow\frac{1}{AH^2}=\frac{AB^2+BC^2}{AB^2.AC^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
Vậy...
Ngồi nháp rồi nghĩ ra phần a :) Sẽ cập nhật khi nghĩ được b , c
[ Tự vẽ hình ]
Áp dụng định lý Pythagores có :
- \(AB^2+AC^2=BC^2\)
- \(AH^2=AC^2-HC^2=AB^2-BH^2\)
\(\Rightarrow AH^2=\frac{AC^2-HC^2+AB^2-HB^2}{2}\)
\(=\frac{\left(AB^2+AC^2\right)-\left(HB^2+HC^2+2HB.HC\right)+2HB.HC}{2}\)
\(=\frac{BC^2-\left(HB+HC\right)^2+2HB.HC}{2}\)
\(=\frac{BC^2-BC^2+2HB.HC}{2}\)
\(=\frac{2HB.HC}{2}\)
\(=HB.HC\)
Vậy \(AH^2=HB.HC.\)
\(3BH^2+2\cdot AH^2+CH^2\)
\(=BH^2+CH^2+2\cdot BH^2+2\cdot AH^2\)
\(=BC^2+2\cdot AB^2\)
\(=BC^2+AB^2+AC^2\)