Tìm x biết
a) \(2^x+2^{x+3}=144\)
b)\(\left(4x-1\right)^2=25.9\)
Mọi người giúp mik bài này với ạ cảm ơn rất nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
\(x^2-x+1-m=0\left(1\right)\\ \text{PT có 2 nghiệm }x_1,x_2\\ \Leftrightarrow\Delta=1-4\left(1-m\right)\ge0\\ \Leftrightarrow4m-3\ge0\Leftrightarrow m\ge\dfrac{3}{4}\\ \text{Vi-ét: }\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=1-m\end{matrix}\right.\\ \text{Ta có }5\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)-x_1x_2+4=0\\ \Leftrightarrow5\cdot\dfrac{x_1+x_2}{x_1x_2}-x_1x_2+4=0\\ \Leftrightarrow\dfrac{5}{1-m}+m-1+4=0\\ \Leftrightarrow\dfrac{5}{1-m}+m+3=0\\ \Leftrightarrow5+\left(1-m\right)\left(m+3\right)=0\\ \Leftrightarrow m^2+2m-8=0\\ \Leftrightarrow m^2-2m+4m-8=0\\ \Leftrightarrow\left(m-2\right)\left(m+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2\left(n\right)\\m=-4\left(l\right)\end{matrix}\right.\)
Vậy $m=2$
a) \(ĐKXĐ:\hept{\begin{cases}x\ne3\\x\ne\pm2\end{cases}}\)
b) \(D=\left(\frac{2+x}{2-x}-\frac{2-x}{2+x}-\frac{4x^2}{x^2-4}\right)\div\left(\frac{x-3}{2-x}\right)\)
\(\Leftrightarrow D=\frac{\left(2+x\right)^2-\left(2-x\right)^2+4x^2}{\left(2-x\right)\left(2+x\right)}\cdot\frac{2-x}{x-3}\)
\(\Leftrightarrow D=\frac{4+4x+x^2-4+4x-x^2+4x^2}{\left(2+x\right)\left(x-3\right)}\)
\(\Leftrightarrow D=\frac{4x^2+8x}{\left(x+2\right)\left(x-3\right)}\)
\(\Leftrightarrow D=\frac{4x}{x-3}\)
c) Để D = 0
\(\Leftrightarrow\frac{4x}{x-3}=0\)
\(\Leftrightarrow4x=0\)
\(\Leftrightarrow x=0\)
Vậy để D = 0 \(\Leftrightarrow\)x = 0
d) Khi \(\left|2x-1\right|=5\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=5\\1-2x=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=6\\2x=-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\left(ktm\right)\\x=-2\left(ktm\right)\end{cases}}\)
Vậy khi \(\left|2x-1\right|=5\Leftrightarrow D\in\varnothing\)
Bài 1:
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1\(\ge\)0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967\(\ge\)0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2\(\le\)0+21=21
Dấu = khi x+4=0 <=>x=-4
b)đề sai à
ài 1:
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1$\ge$≥0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967$\ge$≥0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2$\le$≤0+21=21
Dấu = khi x+4=0 <=>x=-4
b)đề sai à
\(=\dfrac{\sqrt{a}+2+\sqrt{a}-2}{a-4}:\dfrac{\sqrt{a}+2-2}{\sqrt{a}+2}\)
\(=\dfrac{2\sqrt{a}}{a-4}\cdot\dfrac{\sqrt{a}+2}{\sqrt{a}}=\dfrac{2}{\sqrt{a}-2}\)
Ta có : \(\left|x+\frac{13}{14}\right|=-\left|x-\frac{3}{7}\right|\)
\(\Rightarrow\left|x+\frac{13}{14}\right|+\left|x-\frac{3}{7}\right|=0\)
Mà : \(\left|x+\frac{13}{14}\right|\ge0\forall x\)
\(\left|x-\frac{3}{7}\right|\ge0\forall x\)
Nên : \(\orbr{\begin{cases}\left|x+\frac{13}{14}\right|=0\\\left|x-\frac{3}{7}\right|=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{13}{14}=0\\x-\frac{3}{7}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{13}{14}\\x=\frac{3}{7}\end{cases}}\)
\(a)2^x+2^{x+3}=144\\ 2^x\times\left(1+2^3\right)=144\\ 2^x\times9=144\\ 2^x=144:9\\ 2^x=16\\ 2^x=2^4\\ \Rightarrow x=4\)
\(b)\left(4x-1\right)^2=25\times9\\ \left(4x-1\right)^2=\left(5\times3\right)^2\\ \Rightarrow4x-1=\pm15\\ \Rightarrow\left[{}\begin{matrix}4x=16\\4x=-14\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{7}{2}\end{matrix}\right.\)
mọi người giúo mik vs ạ