Cho a+b+c=0
Tính \(M=\frac{1}{a^2+b^2-c^2}+\frac{1}{a^2+c^2-b^2}+\frac{1}{b^2+c^2-a^2}\)
trình bày cách làm nữa nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình như có cả abc khac 0 nữa mà nếu như z thì giải nè
Từ a+b+c=0 =>a= - (b+c)
a^2 = (b+c)^2
b= - (a+c)
b^2= (a+c)^2
c= - (a+b)
c^2=(a+b)^2
M= 1/a^2+b^2-(a+b)^2 + 1/a^2+c^2-(a+c)^2 + 1/b^2+c^2-(b+c)^2
M= 1/-2ab + 1/-2ac + 1/-2bc
M= -c/2abc + -b/2abc + -a/2abc
M= -(a+b+c)/2abc
mà a+b+c=0
Vậy M=0
Ta có A = \(\frac{a^2}{1bc}+\frac{b^2}{ac}+\frac{c^2}{ab}=\frac{a^3++b^3+c^3}{abc}\)
Xét phần tử ta có
a3 + b3 + c3
= a3 + b3 + 3ab(a + b) + c3 - 3ab(a + b)
= (a + b)3 + c3 - 3ab(a + b)
= (a + b + c)[(a + b)2 - c(a + b) + c2] - 3ab(a + b)
= - 3ab(-c)
= 3abc
Thế vào tìm được A = 3
a+b+c=0 =>a+b=-c =>(a+b)2=(-c)2=>a2+b2+2ab=c2=>a2+b2-c2=-2ab
tương tự , b2+c2-a2=-2bc ; c2+a2-b2=-2ca
Thay vào P=1/-2ab + 1/-2bc + 1/-2ca = 0
a)\(\left(\frac{5}{2}-\frac{4}{3}\right).\frac{6}{7}+\left(-\frac{3}{2}\right)^5:\left(-\frac{3}{2}\right)^3=\left(\frac{15}{6}-\frac{8}{6}\right).\frac{6}{7}+\left(-\frac{3}{2}\right)^2=\frac{7}{6}.\frac{6}{7}+\frac{9}{4}=\frac{9}{4}\)
đề ko có d nha bạn :
=> sửa lại : cho a+b+c =0 . CM: ...........
===========================================================
a , Ta có : \(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
=> M = \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
\(=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\left(-c\right)\left(-a\right)\left(-b\right)}{abc}=-1\)
\(a+b+c=0\) nha
a có bạn làm rồi mình làm ý b thôi nak
\(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)
\(N=\frac{1}{b^2+c^2-a^2}+\frac{1}{a^2+c^2-b^2}+\frac{1}{a^2+b^2-c^2}\)
\(=\frac{1}{\left(b^2+2bc+c^2\right)-a^2-2bc}+\frac{1}{\left(a^2+2ac+c^2\right)-b^2-2ac}+\frac{1}{\left(a^2+2ab+b^2\right)-c^2-2ab}\)
\(\frac{1}{\left(b+c\right)^2-a^2-2bc}+\frac{1}{\left(a+c\right)^2-b^2-2ac}+\frac{1}{\left(a+b\right)^2-c^2-2ab}\)
\(=\frac{1}{-2bc}+\frac{1}{-2ab}+\frac{1}{-2ab}\)
\(=\frac{a+b+c}{-2abc}=0\)
Gọi biểu thức đã cho là A
ta có a+b+c =0 suy ra b+c = -a bình phương 2 vế ta có b2+c2+2bc=a2 suy ra 2bc = a2-b2-c2
tương tự thì ta có \(A=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{a^3+b^3+c^3}{2abc}\)
Với a+b+c =0 ta lại chứng minh được a3+b3+c3=3abc
Do đó \(A=\frac{3abc}{2abc}=\frac{3}{2}\) ( vì a,b,c khác 0)
563626993646846830699546963839068095685468787806796579=0597
1. a + b + c = 0 \(\Rightarrow\)a + b = -c \(\Rightarrow\)( a + b )2 = ( -c )2 \(\Rightarrow\)a2 + b2 - c2 = -2ab
Tương tự : b2 + c2 - a2 = -2bc ; c2 + a2 - b2 = -2ac
Ta có : \(\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}\)
\(=\frac{1}{-2ab}+\frac{1}{-2bc}+\frac{1}{-2ac}=\frac{-1}{2}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(=\frac{-1}{2}\left(\frac{a+b+c}{abc}\right)=0\)
2. tương tự
3,4 . có ở dưới, câu hỏi của Quyết Tâm chiến thắng
Lần sau đăng ít một thôi toàn bài dài :v, ko phải ko làm mà là ngại làm
a)Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{a}{2a+b+c}=\frac{a}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{b}{a+2b+c}\le\frac{1}{4}\left(\frac{b}{a+b}+\frac{b}{b+c}\right);\frac{c}{a+b+2c}\le\frac{1}{4}\left(\frac{c}{a+c}+\frac{c}{b+c}\right)\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\le\frac{1}{4}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{4}\)
Xảy ra khi \(a=b=c\)
b)Đặt \(THANG=abc\left(a^2+bc\right)\left(b^2+ac\right)\left(c^2+ab\right)>0\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{b+c}{a^2+bc}-\frac{c+a}{b^2+ac}-\frac{a+b}{a^2+ab}\)
\(=\frac{a^4b^4+b^4c^4+c^4a^4-a^4b^2c^2-b^4c^2a^2-c^4a^2b^2}{THANG}\)
\(=\frac{\left(a^2b^2-b^2c^2\right)^2+\left(b^2c^2-c^2a^2\right)+\left(c^2a^2-a^2b^2\right)^2}{2THANG}\ge0\) (Đúng)
Xảy ra khi \(a=b=c\)
c)Ta có:\(\frac{a^2}{b^2+c^2}-\frac{a}{b+c}=\frac{ab\left(a-b\right)+ac\left(a-c\right)}{\left(b+c\right)\left(b^2+c^2\right)}\)
Và \(\frac{b^2}{c^2+a^2}-\frac{b}{c+a}=\frac{bc\left(b-c\right)+ab\left(b-a\right)}{\left(c+a\right)\left(c^2+a^2\right)}\)
\(\frac{c^2}{a^2+b^2}-\frac{c}{a+b}=\frac{ac\left(c-a\right)+bc\left(c-b\right)}{\left(b+a\right)\left(b^2+a^2\right)}\)
Cộng theo vế 3 đăng thức trên ta có:
\(VT-VP=Σ\left[\frac{ab\left(a-b\right)}{\left(b+c\right)\left(b^2+c^2\right)}-\frac{ab\left(a-b\right)}{\left(a+c\right)\left(a^2+c^2\right)}\right]\)
\(=\left(a^2+b^2+c^2+ab+bc+ca\right)\cdotΣ\frac{ab\left(a-b\right)^2}{\left(b+c\right)\left(c+a\right)\left(b^2+c^2\right)\left(c^2+a^2\right)}\ge0\)
2 bài cuối full quy đồng mệt thật :v
\(có.a+b+c=0=>a+b=-c=>\left(a+b\right)^2=\left(-c\right)^2=>a^2+2ab+b^2=c^2=>a^2+b^2-c^2=-2ab\)
Tương tự ta có \(a^2+c^2-b^2=-2ac\)
\(b^2+c^2-a^2=-2bc\)
Do đó \(M=\frac{1}{-2ab}+\frac{1}{-2ac}+\frac{1}{-2bc}=\frac{-1}{2ab}+\frac{-1}{2ac}+\frac{-1}{2bc}=\frac{-c}{2abc}+\frac{-b}{2abc}+\frac{-a}{abc}=\frac{-c-b-a}{2abc}=\frac{-\left(a+b+c\right)}{2abc}=0\left(do.a+b+c=0\right)\)