K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2016

Hình như có cả abc khac 0 nữa mà nếu như z thì giải nè

Từ a+b+c=0 =>a= - (b+c)

a^2 = (b+c)^2

b= - (a+c)

b^2= (a+c)^2

c= - (a+b)

c^2=(a+b)^2

M= 1/a^2+b^2-(a+b)^2  + 1/a^2+c^2-(a+c)^2  + 1/b^2+c^2-(b+c)^2

M= 1/-2ab + 1/-2ac + 1/-2bc

M= -c/2abc + -b/2abc + -a/2abc

M= -(a+b+c)/2abc

mà a+b+c=0

Vậy M=0

26 tháng 11 2016

\(có.a+b+c=0=>a+b=-c=>\left(a+b\right)^2=\left(-c\right)^2=>a^2+2ab+b^2=c^2=>a^2+b^2-c^2=-2ab\)

Tương tự ta có \(a^2+c^2-b^2=-2ac\)

                  \(b^2+c^2-a^2=-2bc\)

Do đó \(M=\frac{1}{-2ab}+\frac{1}{-2ac}+\frac{1}{-2bc}=\frac{-1}{2ab}+\frac{-1}{2ac}+\frac{-1}{2bc}=\frac{-c}{2abc}+\frac{-b}{2abc}+\frac{-a}{abc}=\frac{-c-b-a}{2abc}=\frac{-\left(a+b+c\right)}{2abc}=0\left(do.a+b+c=0\right)\)

31 tháng 7 2019

https://olm.vn/hoi-dap/detail/48946023107.html              vào trang đó coi rồi

ta có a+b+c=0 => a+b=-c => a^2 +b^2 =c^2-2ab

tương tự a^2 + c^2 =b^2-2ac

               b^2 + c^2 =a^2-2bc

thế cào A= -1/2ab + -1/2ac + -1/2bc = -(c+a+b)/2abc=0 (vì a+b+c=0 )

31 tháng 7 2019

  ta có:a^3+b^3+c^3=3abc 
<=>(a+b)^3+c^3-3ab(a+b)-3abc=0 
<=>(a+b+c)[(a+b)^2+(a+b)c+c^2]-3ab(a+b... 
<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0 
<=>1/2(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]... 
do a,b,c doi mot khac nhau nen PT<=>a+b+c=0(DPCM)

lộn nha không phải cái trang đó đâu cái này này 

29 tháng 1 2017

a+b+c=0 =>a+b=-c =>(a+b)2=(-c)2=>a2+b2+2ab=c2=>a2+b2-c2=-2ab

tương tự , b2+c2-a2=-2bc ; c2+a2-b2=-2ca 

Thay vào P=1/-2ab + 1/-2bc + 1/-2ca = 0

5 tháng 8 2017

đề ko có d nha bạn : 

=> sửa lại : cho a+b+c =0 . CM: ...........

===========================================================

a , Ta có : \(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

=> M = \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

\(=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\left(-c\right)\left(-a\right)\left(-b\right)}{abc}=-1\)

5 tháng 8 2017

\(a+b+c=0\) nha

a có bạn làm rồi mình làm ý b thôi nak

\(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)

\(N=\frac{1}{b^2+c^2-a^2}+\frac{1}{a^2+c^2-b^2}+\frac{1}{a^2+b^2-c^2}\)

\(=\frac{1}{\left(b^2+2bc+c^2\right)-a^2-2bc}+\frac{1}{\left(a^2+2ac+c^2\right)-b^2-2ac}+\frac{1}{\left(a^2+2ab+b^2\right)-c^2-2ab}\)

\(\frac{1}{\left(b+c\right)^2-a^2-2bc}+\frac{1}{\left(a+c\right)^2-b^2-2ac}+\frac{1}{\left(a+b\right)^2-c^2-2ab}\)

\(=\frac{1}{-2bc}+\frac{1}{-2ab}+\frac{1}{-2ab}\)

\(=\frac{a+b+c}{-2abc}=0\)

7 tháng 1 2016

Gọi biểu thức đã cho là A

ta có a+b+c =0 suy ra b+c = -a bình phương 2 vế ta có b2+c2+2bc=a2 suy ra 2bc = a2-b2-c2

tương tự thì ta có \(A=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{a^3+b^3+c^3}{2abc}\)

Với a+b+c =0 ta lại chứng minh được a3+b3+c3=3abc

Do đó \(A=\frac{3abc}{2abc}=\frac{3}{2}\) ( vì a,b,c khác 0)

3 tháng 1 2016

563626993646846830699546963839068095685468787806796579=0597

1 tháng 7 2017

Lần sau đăng ít một thôi toàn bài dài :v, ko phải ko làm mà là ngại làm

a)Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{a}{2a+b+c}=\frac{a}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\frac{b}{a+2b+c}\le\frac{1}{4}\left(\frac{b}{a+b}+\frac{b}{b+c}\right);\frac{c}{a+b+2c}\le\frac{1}{4}\left(\frac{c}{a+c}+\frac{c}{b+c}\right)\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\le\frac{1}{4}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{4}\)

Xảy ra khi \(a=b=c\)

b)Đặt \(THANG=abc\left(a^2+bc\right)\left(b^2+ac\right)\left(c^2+ab\right)>0\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{b+c}{a^2+bc}-\frac{c+a}{b^2+ac}-\frac{a+b}{a^2+ab}\)

\(=\frac{a^4b^4+b^4c^4+c^4a^4-a^4b^2c^2-b^4c^2a^2-c^4a^2b^2}{THANG}\)

\(=\frac{\left(a^2b^2-b^2c^2\right)^2+\left(b^2c^2-c^2a^2\right)+\left(c^2a^2-a^2b^2\right)^2}{2THANG}\ge0\) (Đúng)

Xảy ra khi \(a=b=c\)

c)Ta có:\(\frac{a^2}{b^2+c^2}-\frac{a}{b+c}=\frac{ab\left(a-b\right)+ac\left(a-c\right)}{\left(b+c\right)\left(b^2+c^2\right)}\)

Và \(\frac{b^2}{c^2+a^2}-\frac{b}{c+a}=\frac{bc\left(b-c\right)+ab\left(b-a\right)}{\left(c+a\right)\left(c^2+a^2\right)}\)

\(\frac{c^2}{a^2+b^2}-\frac{c}{a+b}=\frac{ac\left(c-a\right)+bc\left(c-b\right)}{\left(b+a\right)\left(b^2+a^2\right)}\)

Cộng theo vế 3 đăng thức trên ta có:

\(VT-VP=Σ\left[\frac{ab\left(a-b\right)}{\left(b+c\right)\left(b^2+c^2\right)}-\frac{ab\left(a-b\right)}{\left(a+c\right)\left(a^2+c^2\right)}\right]\)

\(=\left(a^2+b^2+c^2+ab+bc+ca\right)\cdotΣ\frac{ab\left(a-b\right)^2}{\left(b+c\right)\left(c+a\right)\left(b^2+c^2\right)\left(c^2+a^2\right)}\ge0\)

2 bài cuối full quy đồng mệt thật :v