Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
- Chứng minh a3+b3+c3=3abc thì a+b+c=0
\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)
\(\Rightarrow\left[\left(a+b\right)^3+c^3\right]-3abc\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow0=0\) Đúng (Đpcm)
- Chứng minh a3+b3+c3=3abc thì a=b=c
Áp dụng Bđt Cô si 3 số ta có:
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)
Dấu = khi a=b=c (Đpcm)
Câu 2
Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=3\cdot\frac{1}{abc}\)
Ta có:
\(\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ac}{b^2}=\frac{abc}{c^3}+\frac{abc}{a^3}+\frac{abc}{b^3}\)
\(=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
\(=abc\cdot3\cdot\frac{1}{abc}=3\)
1) \(M=a^2b^2c^2\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
Em chú ý bài toán sau nhé: Nếu a+b+c=0 <=> \(a^3+b^3+c^3=3abc\)
CM: có:a+b=-c <=> \(\left(a+b\right)^3=-c^3\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
Chú ý: a+b=-c nên \(a^3+b^3+c^3=3abc\)
Do \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Thay vào biểu thwusc M ta được M=3abc (ĐPCM)
2, em có thể tham khảo trong sách Nâng cao phát triển toán 8 nhé, anh nhớ không nhầm thì bài này trong đó
Nếu không thấy thì em có thể quy đồng lên mà rút gọn
đề ko có d nha bạn :
=> sửa lại : cho a+b+c =0 . CM: ...........
===========================================================
a , Ta có : \(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
=> M = \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
\(=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\left(-c\right)\left(-a\right)\left(-b\right)}{abc}=-1\)
\(a+b+c=0\) nha
a có bạn làm rồi mình làm ý b thôi nak
\(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)
\(N=\frac{1}{b^2+c^2-a^2}+\frac{1}{a^2+c^2-b^2}+\frac{1}{a^2+b^2-c^2}\)
\(=\frac{1}{\left(b^2+2bc+c^2\right)-a^2-2bc}+\frac{1}{\left(a^2+2ac+c^2\right)-b^2-2ac}+\frac{1}{\left(a^2+2ab+b^2\right)-c^2-2ab}\)
\(\frac{1}{\left(b+c\right)^2-a^2-2bc}+\frac{1}{\left(a+c\right)^2-b^2-2ac}+\frac{1}{\left(a+b\right)^2-c^2-2ab}\)
\(=\frac{1}{-2bc}+\frac{1}{-2ab}+\frac{1}{-2ab}\)
\(=\frac{a+b+c}{-2abc}=0\)