a)(x-1\2)^0=0 b)(x-2)^2 =1 c) (2x-1)^3= -8 d) ( x+1\2)^2= 1\16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Ta có: \(x\left(2x-1\right)-2x+1=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
A) \(\left(x-3\right)^2-\left(x+2\right)^2\)
\(=\left(x-3-x-2\right)\left(x-3+x+2\right)\)
\(=-5.\left(2x-1\right)\)
B) \(\left(4x^2+2xy+y^2\right)\left(2x-y\right)-\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)
\(=\left(2x\right)^3-y^3-\left[\left(2x\right)^3+y^3\right]\)
\(=8x^3-y^3-8x^3-y^3\)
\(=-2y^3\)
C) \(x^2+6x+8\)
\(=x^2+6x+9-1\)
\(=\left(x+3\right)^2-1\)
\(=\left(x+3-1\right)\left(x+3+1\right)\)
\(=\left(x+2\right)\left(x+4\right)\)
bài 3 A) \(x^2-16=0\)
\(\left(x-4\right)\left(x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-4=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
vậy \(\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
B) \(x^4-2x^3+10x^2-20x=0\)
\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\left(x^3+10x\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^3+10x=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x\left(x^2+10\right)=0\\x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
vậy \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Bài 1.
\( a)\dfrac{{4x - 8}}{{2{x^2} + 1}} = 0 (x \in \mathbb{R})\\ \Leftrightarrow 4x - 8 = 0\\ \Leftrightarrow 4x = 8\\ \Leftrightarrow x = 2\left( {tm} \right)\\ b)\dfrac{{{x^2} - x - 6}}{{x - 3}} = 0\left( {x \ne 3} \right)\\ \Leftrightarrow \dfrac{{{x^2} + 2x - 3x - 6}}{{x - 3}} = 0\\ \Leftrightarrow \dfrac{{x\left( {x + 2} \right) - 3\left( {x + 2} \right)}}{{x - 3}} = 0\\ \Leftrightarrow \dfrac{{\left( {x + 2} \right)\left( {x - 3} \right)}}{{x - 3}} = 0\\ \Leftrightarrow x - 2 = 0\\ \Leftrightarrow x = 2\left( {tm} \right) \)
Bài 2.
\(c)\dfrac{{x + 5}}{{3x - 6}} - \dfrac{1}{2} = \dfrac{{2x - 3}}{{2x - 4}}\)
ĐK: \(x\ne2\)
\( Pt \Leftrightarrow \dfrac{{x + 5}}{{3x - 6}} - \dfrac{{2x - 3}}{{2x - 4}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{x + 5}}{{3\left( {x - 2} \right)}} - \dfrac{{2x - 3}}{{2\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{2\left( {x + 5} \right) - 3\left( {2x - 3} \right)}}{{6\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{ - 4x + 19}}{{6\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow 2\left( { - 4x + 19} \right) = 6\left( {x - 2} \right)\\ \Leftrightarrow - 8x + 38 = 6x - 12\\ \Leftrightarrow - 14x = - 50\\ \Leftrightarrow x = \dfrac{{27}}{5}\left( {tm} \right)\\ d)\dfrac{{12}}{{1 - 9{x^2}}} = \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} \)
ĐK: \(x \ne -\dfrac{1}{3};x \ne \dfrac{1}{3}\)
\( Pt \Leftrightarrow \dfrac{{12}}{{1 - 9{x^2}}} - \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} = 0\\ \Leftrightarrow \dfrac{{12}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} - \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} = 0\\ \Leftrightarrow \dfrac{{12 - {{\left( {1 - 3x} \right)}^2} - {{\left( {1 + 3x} \right)}^2}}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} = 0\\ \Leftrightarrow \dfrac{{12 + 12x}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} = 0\\ \Leftrightarrow 12 + 12x = 0\\ \Leftrightarrow 12x = - 12\\ \Leftrightarrow x = - 1\left( {tm} \right) \)
a. (x-1/2)2=0
=> x-1/2=0
=> x=1/2
b. (x-2)2=1
=> (x-2)2=12=(-1)2
=> x-2=1 hoặc x-2=-1
=> x=3 hoặc x=1
c. (2x-10)3=-8
=> (2x-10)3=(-2)3
=> 2x-10=-2
=> 2x=-2+10
=> 2x=8
=> x=8:2
=> x=4
d. (x+1/2)2=1/16
=> (x+1/2)2=(1/4)2=(-1/4)2
=> x+1/2=1/4 hoặc x+1/2=-1/4
=> x=1/4-1/2 hoặc x=-1/4-1/2
=> x=-1/4 hoặc x=-3/4
(x - 1/2)2 = 0
=> x - 1/2 = 0
x = 1/2
...............Tương tự
a) \(\left(x-3\right)^2-4=0\)
\(\left(x-3\right)^2=0+4\)
\(\left(x-3\right)^2=4\)
\(\left(x-3\right)^2=\pm4\)
\(\left(x-3\right)^2=\pm2^2\)
\(\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}}\)
\(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)
b) \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\)
\(4x^2+12x+9-4x^2+1=22\)
\(12x+10=22\)
\(12x=22-10\)
\(12x=12\)
\(x=1\)
c) \(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=16\)
\(16x^2-9-16x^2+40x-25=16\)
\(-34+40x=16\)
\(40x=16+34\)
\(40x=50\)
\(x=\frac{50}{40}=\frac{5}{4}\)
d) \(x^3-9x^2+27x-27=-8\)
\(x^3-9x^2+27x-27+8=0\)
\(x^3-9x^2+27x-19=0\)
\(\left(x^2-8x+19\right)\left(x-1\right)=0\)
Vì \(\left(x^2-8x+19\right)>0\) nên:
\(x-1=0\)
\(x=1\)
e) \(\left(x+1\right)^3-x^2\left(x+3\right)=2\)
\(x^3+2x^2+x+x^2+2x+1-x^2-3x^2=2\)
\(3x+1=2\)
\(3x=2-1\)
\(3x=1\)
\(x=\frac{1}{3}\)
b) ( 2x+3)^2 - (2x+1)(2x-1) =22
=> 4x2+12x+9-4x2+1=22
=> 12x=12
=>x=1
c) (4x+3)(4x-3) -(4x-5)^2 =16
=>16x2-9-16x2+40x-25=16
=>40x=50
=>x=4/5
a)\(\left(x-13\right)^2-4=0\\\left(x-13\right)^2=4\\ \left(x-13\right)^2=2^2\\ \Rightarrow\left\{{}\begin{matrix}x-13=2\\x-13=-2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}15\\-11\end{matrix}\right.\)
vậy...
c(x-1)^2=4
x^2-2x+1=4
x^2-2x+1-4=0
x^2-2x-3=0
x^2-3x+x-3=0
x(x-3)+(x-3)=0
(x-3)(x+1)=0
\(\Rightarrow\hept{\begin{cases}x-3=0\\x+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\x=-1\end{cases}}}\)
d, x^3+2x^2-x-2=0
x^2(x+2)-(x+2)=0
(x+2)(x^2-1)=0
\(\Rightarrow\hept{\begin{cases}x=-2\\x=+-1\end{cases}}\)
\(a.2x-3=4x+6\)
\(\Leftrightarrow2x-3-4x-6=0\)
\(\Leftrightarrow-2x-9=0\)
\(\Leftrightarrow x=\dfrac{9}{2}\)
\(S=\left\{\dfrac{9}{2}\right\}\)
\(b.x\left(x-1\right)+x\left(x+3\right)=0\)
\(\Leftrightarrow x^2-x+x^2+3x=0\)
\(\Leftrightarrow2x^2+2=0\)
\(\Leftrightarrow x\left(2x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x+2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
\(S=\left\{0,-1\right\}\)
Mấy câu khác bn gửi lại đc ko tại mik chx hiểu lắm
a: =>-2x=9
=>x=-9/2
c: =>x(x-1+x+3)=0
=>x(2x+2)=0
=>x=0 hoặc x=-1
\(a,2x-3=4x+6\)
\(\Leftrightarrow2x-4x=6+3\)
\(\Leftrightarrow-2x=9\)
\(\Leftrightarrow x=-\dfrac{9}{2}\)
\(b,\) Ghi vậy mình không làm được.
\(c,\)\(x\left(x-1\right)+x\left(x+3\right)=0\)
\(\Leftrightarrow x\left(x-1+x+3\right)=0\)
\(\Leftrightarrow x\left(2x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
\(d,\dfrac{x}{2x-6}-\dfrac{x}{2x+2}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)
\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}-\dfrac{x}{2\left(x+1\right)}-\dfrac{2}{\left(x+1\right)\left(x-3\right)}=0\left(dkxd:x\ne-1;x\ne3\right)\)
\(\Leftrightarrow\dfrac{x\left(x+1\right)-x\left(x-3\right)-2.2}{2\left(x+1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow x^2+x-x^2+3x-4=0\)
\(\Leftrightarrow4x-4=0\)
\(\Leftrightarrow x=1\left(tmdk\right)\)
Vậy \(S=\left\{1\right\}\)
a, ( x - \(\dfrac{1}{2}\))0 = 0 ⇔ x - 1/2 = 0 ⇒ x =1/2
b, (x - 2)2 = 1 ⇒ x - 2 = 1 hoặc x -2 = -1
x -2 = 1 ⇒ x = 2 + 1 = 3
x - 2 = -1 ⇒ x = 2 - 1 = 1
vậy x ϵ {1; 3}
c, (2x - 1 )3 = - 8 ⇒ (2x - 1)3 = (-2)3 ⇒ 2x - 1 = -2
⇒ 2x = 1 - 2 = -1⇒ x = -1/2
d, (x + \(\dfrac{1}{2}\))2 = \(\dfrac{1}{16}\) ⇒ ( x+ \(\dfrac{1}{2}\))2 =( \(\dfrac{1}{4}\))2
x + \(\dfrac{1}{2}\) = \(\dfrac{1}{4}\) hoặc x + \(\dfrac{1}{2}\) = - \(\dfrac{1}{4}\)
x + \(\dfrac{1}{2}\) = \(\dfrac{1}{4}\) ⇒ x = \(\dfrac{1}{4}\)- \(\dfrac{1}{2}\)= \(\dfrac{-1}{4}\)
x + \(\dfrac{1}{2}\) = - \(\dfrac{1}{4}\) ⇒ x = -\(\dfrac{1}{2}\) - \(\dfrac{1}{4}\) = \(\dfrac{-3}{4}\)
vậy x ϵ {-\(\dfrac{3}{4}\), - \(\dfrac{1}{4}\)}