Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. (x-1/2)2=0
=> x-1/2=0
=> x=1/2
b. (x-2)2=1
=> (x-2)2=12=(-1)2
=> x-2=1 hoặc x-2=-1
=> x=3 hoặc x=1
c. (2x-10)3=-8
=> (2x-10)3=(-2)3
=> 2x-10=-2
=> 2x=-2+10
=> 2x=8
=> x=8:2
=> x=4
d. (x+1/2)2=1/16
=> (x+1/2)2=(1/4)2=(-1/4)2
=> x+1/2=1/4 hoặc x+1/2=-1/4
=> x=1/4-1/2 hoặc x=-1/4-1/2
=> x=-1/4 hoặc x=-3/4
(x - 1/2)2 = 0
=> x - 1/2 = 0
x = 1/2
...............Tương tự
Các đề bài trên khi chuyển vế đều bị mất đi x nên không có x thỏa mãn
a. (x-1/20)2=0
=> x-1/20=0
=> x=1/20
b. (x-2)2=1
=> (x-2)2=12=(-1)2
+) x-2=1
=> x=3
+) x-2=-1
=> x=1
Vậy x \(\in\){1;3}
c. (2x-1)3=-8
=> (2x-1)3=(-2)3
=> 2x-1=-2
=> 2x=-1
=> x=-1/2
d. (x+1/2)2=1/16
=> (x+1/2)2=(1/4)2=(-1/4)2
+) x+1/2=1/4
=> x=-1/4
+) x+1/2=-1/4
=> x=-3/4
Vậy x \(\in\){-3/4; -1/4}
a) \(\left(x-\frac{1}{2}\right)^2=0\Rightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
b) \(\left(x-2\right)^2=1\)
\(\Rightarrow\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
c)\(\left(2x-1\right)^3=-8=\left(-2\right)^3\)
\(\Rightarrow2x-1=-2\)
\(2x=-1\)
\(x=-\frac{1}{2}\)
d) \(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{1}{2}=\frac{1}{4}\\x+\frac{1}{2}=-\frac{1}{4}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{4}\\x=-\frac{3}{4}\end{cases}}\)
\(\left(x-1\right)\left(x+5\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\Rightarrow x>1\\x+5>0\Rightarrow x>-5\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\Rightarrow x< 1\\x+5< 0\Rightarrow x< -5\end{matrix}\right.\end{matrix}\right.\)
\(\left(x-1\right)\left(x+5\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\Rightarrow x>1\\x+5< 0\Rightarrow x< -5\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\Rightarrow x< 1\\x+5>0\Rightarrow x>-5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-5< x< 1\)
câu dễ tự làm
\(\Rightarrow x>-5;x< -5\)
a, \(\frac{x+1}{5}=\frac{3}{7}\Rightarrow7\left(x+1\right)=15\Rightarrow7x+7=15\Rightarrow7x=8\Rightarrow x=\frac{8}{7}\)
b, \(\frac{x-2}{3}=\frac{3}{8}\Rightarrow8\left(x-2\right)=9\Rightarrow8x-16=9\Rightarrow8x=25\Rightarrow x=\frac{25}{8}\)
c, \(\frac{-x-1}{2}=\frac{-3}{5}\Rightarrow5\left(-x-1\right)=-6\Rightarrow-5x-5=-6\Rightarrow-5x=-1\Rightarrow x=\frac{1}{5}\)
d, \(\frac{4}{5-x}=\frac{1}{3}\Rightarrow5-x=12\Rightarrow x=-7\)
e, \(2x\left(x-\frac{1}{7}\right)=0\Rightarrow\orbr{\begin{cases}2x=0\\x-\frac{1}{7}=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{7}\end{cases}}}\)
\(\left(\frac{-7}{4}:\frac{5}{8}\right)\cdot\frac{11}{16}=\frac{-7}{4}\cdot\frac{8}{5}\cdot\frac{11}{16}=\frac{-7.11}{4.5.2}=\frac{-77}{40}\)
a: \(\left(2x+1\right)^2=\left(x-1\right)^2\)
=>2x+1=x-1 hoặc 2x+1=1-x
=>x=-2 hoặc x=0
b: \(\left(x^2-5\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow x\in\left\{\sqrt{5};-\sqrt{5};-3\right\}\)
c: \(3\left(x-1\right)\left(2x-1\right)=5\left(x+8\right)\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(6x-3-5x-40\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-43\right)=0\)
hay \(x\in\left\{1;43\right\}\)
d: \(\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)
=>x+1=0
hay x=-1
1) Các cách viết số 25 dưới dãng lũy thừa là: 251; 52; (-5)2
2) a) \(\left(x-\frac{1}{2}\right)^2=0\)
=> \(x-\frac{1}{2}=0\)
=> \(x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\)
b) (x - 2)2 = 1
=> \(\left[\begin{array}{nghiempt}x-2=1\\x-2=-1\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}x=3\\x=1\end{array}\right.\)
Vậy \(x\in\left\{3;1\right\}\)
c) (2x - 1)3 = -8
=> (2x - 1)3 = (-2)3
=> 2x - 1 = -2
=> 2x = -2 + 1
=> 2x = -1
=> \(x=-\frac{1}{2}\)
Vậy \(x=-\frac{1}{2}\)
d) \(\left(x+\frac{1}{2}\right)^2=16\)
=> \(\left[\begin{array}{nghiempt}x+\frac{1}{2}=\frac{1}{4}\\x+\frac{1}{2}=-\frac{1}{4}\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}x=-\frac{1}{4}\\x=-\frac{3}{4}\end{array}\right.\)
Vậy \(x\in\left\{-\frac{1}{4};-\frac{3}{4}\right\}\)
1) Các cách viết số 25 dưới dãng lũy thừa là: 251; 52; (-5)2
2) a) (x−12)2=0(x−12)2=0
=> x−12=0x−12=0
=> x=12x=12
Vậy x=12x=12
b) (x - 2)2 = 1
=> [x−2=1x−2=−1[x−2=1x−2=−1=> [x=3x=1[x=3x=1
Vậy x∈{3;1}x∈{3;1}
c) (2x - 1)3 = -8
=> (2x - 1)3 = (-2)3
=> 2x - 1 = -2
=> 2x = -2 + 1
=> 2x = -1
=> x=−12x=−12
Vậy x=−12x=−12
d) (x+12)2=16(x+12)2=16
=> [x+12=14x+12=−14[x+12=14x+12=−14=> [x=−14x=−34[x=−14x=−34
Vậy x∈{−14;−34}
a, ( x - \(\dfrac{1}{2}\))0 = 0 ⇔ x - 1/2 = 0 ⇒ x =1/2
b, (x - 2)2 = 1 ⇒ x - 2 = 1 hoặc x -2 = -1
x -2 = 1 ⇒ x = 2 + 1 = 3
x - 2 = -1 ⇒ x = 2 - 1 = 1
vậy x ϵ {1; 3}
c, (2x - 1 )3 = - 8 ⇒ (2x - 1)3 = (-2)3 ⇒ 2x - 1 = -2
⇒ 2x = 1 - 2 = -1⇒ x = -1/2
d, (x + \(\dfrac{1}{2}\))2 = \(\dfrac{1}{16}\) ⇒ ( x+ \(\dfrac{1}{2}\))2 =( \(\dfrac{1}{4}\))2
x + \(\dfrac{1}{2}\) = \(\dfrac{1}{4}\) hoặc x + \(\dfrac{1}{2}\) = - \(\dfrac{1}{4}\)
x + \(\dfrac{1}{2}\) = \(\dfrac{1}{4}\) ⇒ x = \(\dfrac{1}{4}\)- \(\dfrac{1}{2}\)= \(\dfrac{-1}{4}\)
x + \(\dfrac{1}{2}\) = - \(\dfrac{1}{4}\) ⇒ x = -\(\dfrac{1}{2}\) - \(\dfrac{1}{4}\) = \(\dfrac{-3}{4}\)
vậy x ϵ {-\(\dfrac{3}{4}\), - \(\dfrac{1}{4}\)}