K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2021

Xét : \(x\ge\dfrac{14}{3}\Rightarrow3x-14-x-2=5\Leftrightarrow2x=21\Leftrightarrow x=\dfrac{21}{2}\)

Xét : \(-2\le0< \dfrac{14}{3}\Rightarrow14-3x-x-2=5\Leftrightarrow-4x=-7\Leftrightarrow x=\dfrac{7}{4}\)

 

1 tháng 9 2017

1 tháng 7 2017

Ta có : 17 - 14(x + 1) = 13 - 4(x + 1) - 5(x - 3)

<=> 17 - 14x - 14 = 13 - 4x - 4 - 5x + 15

<=> -14x + 3 = -9x + 24

<=> -14x + 9x = 24 - 3

<=> -5x = 21

=> x = -4,2

1 tháng 7 2017

Ta có :  5x + 3,5 + (3x - 4) = 7x - 3(x - 0,5)

<=>  5x + 3,5 + 3x - 4 = 7x - 3x + 1,5 

<=> 8x - 0,5 = 4x + 1,5

=> 8x - 4x = 1,5 + 0,5

=> 4x = 2

=> x = \(\frac{1}{2}\)

Bình phương 2 vế lên là giải được bạn nhé !

3x2 + 5x + 14 = 5(x + 1)\(\sqrt{4x-1}\)

<=> \(\left(3x^2+5x+14\right)^2=\left[5\left(x+1\right)\sqrt{4x-1}\right]^2\)

Phân tích ra giải tiếp nhé bạn 

18 tháng 5 2018

Nếu phân tích ra tiếp sẽ ra phương trình bậc 4, PT ấy k có nghiệm nguyên 

NV
8 tháng 1 2021

ĐKXĐ: ...

\(VT\le\sqrt{2\left(2x-3+5-2x\right)}=2\)

\(VP=3\left(x-2\right)^2+2\ge2\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}2x-3=5-2x\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow x=2\)

bài 2 giải các phương trình saub,\(\dfrac{2\left(3-7x\right)}{1+x}=\dfrac{1}{2}\)               m,\(\dfrac{3x-1}{x+1}=\dfrac{2x+1}{x-1}\)d,\(\dfrac{3x-14}{x+5}=\dfrac{2}{3}\)                   p,\(\dfrac{4x+7}{x-1}=\dfrac{12x+5}{3x+4}\)f,\(\dfrac{6}{x}-1=\dfrac{2x-3}{3}\)               r,\(\dfrac{1}{x+3}+\dfrac{1}{x-1}=\dfrac{10}{\left(x+3\right)\left(x-1\right)}\)h,\(\dfrac{1}{x-2}+3=\dfrac{x-3}{2-x}\)       ...
Đọc tiếp

bài 2 giải các phương trình sau

b,\(\dfrac{2\left(3-7x\right)}{1+x}=\dfrac{1}{2}\)               m,\(\dfrac{3x-1}{x+1}=\dfrac{2x+1}{x-1}\)

d,\(\dfrac{3x-14}{x+5}=\dfrac{2}{3}\)                   p,\(\dfrac{4x+7}{x-1}=\dfrac{12x+5}{3x+4}\)

f,\(\dfrac{6}{x}-1=\dfrac{2x-3}{3}\)               r,\(\dfrac{1}{x+3}+\dfrac{1}{x-1}=\dfrac{10}{\left(x+3\right)\left(x-1\right)}\)

h,\(\dfrac{1}{x-2}+3=\dfrac{x-3}{2-x}\)         t,\(\dfrac{3x}{x-2}-\dfrac{x}{x-5}=\dfrac{3x}{\left(x-2\right)\left(5-x\right)}\)

j,\(\dfrac{5}{3x+2}=2x-1\)              u,\(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=\dfrac{2\left(x^2+x-1\right)}{x\left(x+1\right)}\)

w,\(\dfrac{5x}{2x+2}+1=-\dfrac{6}{x+1}\)         s, \(\dfrac{6}{x-1}-\dfrac{4}{x-3}=\dfrac{2x}{\left(x-1\right)\left(x-3\right)}\)

ơ,\(\dfrac{1}{x-1}+\dfrac{2}{x+1}=\dfrac{x}{x^2-1}\)          v,\(\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x+1\right)}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)

z,\(\dfrac{1}{x-1}-\dfrac{3x^2}{x^3-1}=\dfrac{2x}{x^2+x+1}\)             ư,\(\dfrac{x+2}{x-2}-\dfrac{-2}{x^2-2x}=\dfrac{1}{x}\)

o,\(x+\dfrac{1}{x}=x^2+\dfrac{1}{x^2}\)          ô,\(1-\dfrac{1}{1-x}=\dfrac{x^2}{x^2-1}\)       zz,\(\dfrac{12}{8+x^3}=1+\dfrac{1}{x+2}\)

2
13 tháng 1 2023

Bạn chia nhỏ các phần ra nhé.

13 tháng 1 2023

uh mk biết lần sau mk rút kinh nghiệm

7 tháng 10 2021

Đk: \(x\ge1\)

\(\Leftrightarrow4\left(2\sqrt{x-1}-1\right)+\left(4x-5\right)\left(x+2\right)=0\)

\(\Leftrightarrow\dfrac{4\left(4x-5\right)}{2\sqrt{x-1}+1}+\left(4x-5\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(4x-5\right)\left(\dfrac{4}{2\sqrt{x-1}+1}+x+2\right)=0\)

\(\Leftrightarrow x=\dfrac{5}{4}\)(Dễ thấy ngoặc to lớn hơn 0 với \(x\ge1\))

7 tháng 10 2021

Bạn làm chi tiết ra nữa đc khum? Như thế mình vẫn chưa hiểu lắm :((

a: Ta có: \(\left\{{}\begin{matrix}3x+2y=14\\5x+3y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}15x+10y=70\\15x+9y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=67\\3x=14-2y=14-2\cdot67=-120\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-40\\y=67\end{matrix}\right.\)

b: Ta có: \(\left\{{}\begin{matrix}-x+2y-6=0\\5x-3y-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-x+2y=6\\5x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-5x+10y=30\\5x-3y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7y=35\\2y-x=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=4\end{matrix}\right.\)

a: (3x-2)(4x+5)=0

=>3x-2=0 hoặc 4x+5=0

=>x=2/3 hoặc x=-5/4

b: (2,3x-6,9)(0,1x+2)=0

=>2,3x-6,9=0 hoặc 0,1x+2=0

=>x=3 hoặc x=-20

c: =>(x-3)(2x+5)=0

=>x-3=0 hoặc 2x+5=0

=>x=3 hoặc x=-5/2

ĐKXĐ: \(x\in R\)

\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)

=>\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}+x^2+2x-4=0\)

\(\Leftrightarrow\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}+x^2+2x+1-5=0\)

=>\(\sqrt{3x^2+6x+7}-2+\sqrt{5x^2+10x+14}-3+\left(x+1\right)^2=0\)

=>\(\dfrac{3x^2+6x+7-4}{\sqrt{3x^2+6x+7}+2}+\dfrac{5x^2+10x+14-9}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)

=>

\(\dfrac{3x^2+6x+3}{\sqrt{3x^2+6x+7}+2}+\dfrac{5x^2+10x+5}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)

=>\(\dfrac{3\left(x^2+2x+1\right)}{\sqrt{3x^2+6x+7}+2}+\dfrac{5\left(x^2+2x+1\right)}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)

\(\Leftrightarrow\dfrac{3\left(x+1\right)^2}{\sqrt{3x^2+6x+7}+2}+\dfrac{5\left(x+1\right)^2}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)

=>\(\left(x+1\right)^2\left(\dfrac{3}{\sqrt{3x^2+6x+7}+2}+\dfrac{5}{\sqrt{5x^2+10x+14}+3}+1\right)=0\)

=>\(\left(x+1\right)^2=0\)

=>x+1=0

=>x=-1(nhận)