Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)√x−2+12√4x−8=√9x−18−2
=>√x−2+12√4(x−2)=√9(x−2)−2
=>√x−2+12√22(x−2)=√32(x−2)−2
=>√x−2+12.2√(x−2)=3√(x−2)−2
=>√x−2+24√(x−2)=3√(x−2)−2
=>√x−2+24√(x−2)-3√(x−2)=-2
=>√x−2(1+24-3)=-2
=>22√x−2=-2
=>√x−2=-2/22
=>√x−2=-1/11
=>x−2=1/121
=>x=1/121+2=243/121
b)√(3x−1)2=5
=>|3x−1|=5
=>3x−1=5 hoặc 3x−1=-5
=>3x=6 hoặc 3x=-4
=>x=2 hoặc x=-4/3
`a)\sqrt{3x}-5\sqrt{12x}+7\sqrt{27x}=12` `ĐK: x >= 0`
`<=>\sqrt{3x}-10\sqrt{3x}+21\sqrt{3x}=12`
`<=>12\sqrt{3x}=12`
`<=>\sqrt{3x}=1`
`<=>3x=1<=>x=1/3` (t/m)
`b)5\sqrt{9x+9}-2\sqrt{4x+4}+\sqrt{x+1}=36` `ĐK: x >= -1`
`<=>15\sqrt{x+1}-4\sqrt{x+1}+\sqrt{x+1}=36`
`<=>12\sqrt{x+1}=36`
`<=>\sqrt{x+1}=3`
`<=>x+1=9`
`<=>x=8` (t/m)
\(a,Đk:x\ge0\\ PT\Leftrightarrow4x-8\sqrt{x}-7\sqrt{x}+14=0\\ \Leftrightarrow\left(\sqrt{x}-2\right)\left(4\sqrt{x}-7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{49}{4}\end{matrix}\right.\left(tm\right)\\ b,ĐK:x\ge0\\ PT\Leftrightarrow\sqrt{x+1}-\sqrt{3x}+1-4x^2=0\\ \Leftrightarrow\dfrac{1-2x}{\sqrt{x+1}+\sqrt{3x}}+\left(1-2x\right)\left(2x+1\right)=0\\ \Leftrightarrow\left(1-2x\right)\left(\dfrac{1}{\sqrt{x+1}+\sqrt{3x}}+2x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\left(tm\right)\\\dfrac{1}{\sqrt{x+1}+\sqrt{3x}}+2x+1=0\left(1\right)\end{matrix}\right.\)
Với \(x\ge0\Leftrightarrow\left(1\right)>0\)
Vậy PT có nghiệm \(x=\dfrac{1}{2}\)
1.
\(\sqrt{50}-3\sqrt{8}+\sqrt{32}=5\sqrt{2}-6\sqrt{2}+4\sqrt{2}=3\sqrt{2}\)
2.
a, ĐK: \(x\in R\)
\(pt\Leftrightarrow\sqrt{\left(x-2\right)^2}=1\)
\(\Leftrightarrow\left|x-2\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
b, ĐK: \(x\ge3\)
\(pt\Leftrightarrow\sqrt{x-3}\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=1\left(l\right)\end{matrix}\right.\)
\(b,x^2+3x-2=0\\ \Delta=3^2-4.1.\left(-2\right)=17\\ =>\left[{}\begin{matrix}x_1=\dfrac{-3+\sqrt{17}}{2}\\x_2=\dfrac{-3-\sqrt{17}}{2}\end{matrix}\right.\)
Mấy câu còn lại mình giải rồi
a) x^2 - 3x + 2 = 0
\(\Delta=b^2-4ac=\left(-3\right)^2-4.1.2=1\)
=> pt có 2 nghiệm pb
\(x_1=\frac{-\left(-3\right)+1}{2}=2\)
\(x_2=\frac{-\left(-3\right)-1}{2}=1\)
a) Dễ thấy phương trình có a + b + c = 0
nên pt đã cho có hai nghiệm phân biệt x1 = 1 ; x2 = c/a = 2
b) \(\hept{\begin{cases}x+3y=3\left(I\right)\\4x-3y=-18\left(II\right)\end{cases}}\)
Lấy (I) + (II) theo vế => 5x = -15 <=> x = -3
Thay x = -3 vào (I) => -3 + 3y = 3 => y = 2
Vậy pt có nghiệm ( x ; y ) = ( -3 ; 2 )
Đk: `x >= 0`.
`<=> sqrtx + sqrt(x+3) + 2sqrt(x(x+3)) - (3x+9) + 5x = 0`
Đặt `sqrt x = a, sqrt(x+3) = b`
`<=> a + b + 2ab - 3b^2 + 5a^2 = 0`
`<=> (a+b)(5a+1-3b) = 0`
`<=> a = -b` hoặc `5a + 1 = 3b`.
Đến đây bạn biến đổi ẩn rồi tự giải tiếp ha.
Đk: \(x\ge1\)
\(\Leftrightarrow4\left(2\sqrt{x-1}-1\right)+\left(4x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\dfrac{4\left(4x-5\right)}{2\sqrt{x-1}+1}+\left(4x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(4x-5\right)\left(\dfrac{4}{2\sqrt{x-1}+1}+x+2\right)=0\)
\(\Leftrightarrow x=\dfrac{5}{4}\)(Dễ thấy ngoặc to lớn hơn 0 với \(x\ge1\))
Bạn làm chi tiết ra nữa đc khum? Như thế mình vẫn chưa hiểu lắm :((