Đổi 5,(9) thành phân số tối giản. Mọi người chỉ mình cách làm với nha! Cảm ơn nhìu!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài có phải như thế này không:
Cho phân số \(A=\frac{n+1}{n-3}\)( với n thuộc Z và n khác 3 ). Tìm n để A là phân số tối giản.
Bài làm
\(A=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=1+\frac{4}{n-3}\)
A là phân số tối giản \(\Leftrightarrow\frac{4}{n-3}\)là phân số tối giản
\(\Leftrightarrow n-3\)là số lẻ
\(\Leftrightarrow n\)là số chẵn
\(\Rightarrow n=2k\left(k\in Z\right)\)
Mình làm theo đề bạn trên nhé !
\(A=\frac{n+1}{n-3}\)
Gọi d là (n+1;n-3)
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\n-3⋮d\end{cases}}\)
\(\Rightarrow n+1-\left(n-3\right)⋮d\)
\(\Rightarrow4⋮d\)
\(\Rightarrow d=1;d=2;d=4\)
( vì 4 chia hết cho 2 nên ta chỉ làm 1 trường hợp ) TH1 :Nếu d=2
\(\Rightarrow n+1⋮2\)
\(\Rightarrow n+1=2k\)
\(\Rightarrow\) n= 2k-1
khi đó :
n-3 = 2k-1-3=2k-4 \(⋮\) 2
=> phân số đó rút gọn được cho 2
Vậy để phân số trên tối giản thì \(n\ne2k-1\)
Gọi phân số cần tìm là : \(\frac{a}{b}\)
Theo đề bài ,ta có :
\(\frac{a}{b}=\frac{a+6}{b+8}\)
=> a(b + 8) = b(a + 6)
=> ab + 8a = ab + 6b
=> 8a = 6b
=> \(\frac{a}{b}=\frac{6}{8}=\frac{3}{4}\)
Vậy phân số đó là \(\frac{3}{4}\)
Có \(A=\frac{n+1}{n-3}=\frac{n-3}{n-3}+\frac{4}{n-3}=1+\frac{4}{n-3}\)
Để A là phân số tối giản thì UCLN (4,n-3) = 1
=> n -3 là số lẻ
=> n lẻ
=> n có dạng 2k+1 (k thuôc Z) và k khác 1 (để n khác 3)
Vậy...
Gọi d là ước chung của 2n+5 và 2n+3
=> 2n+5 chia hết cho d và 2n+3 chia hết cho d
=> (2n+5)-(2n+3)=2 chia hết cho d => d={1;2}
Do 2n+5 và 2n+3 lẻ => d lẻ => d=1
=> phân số trên tối giản với mọi n
Đặt \(A=\frac{a}{a+b}\)
Ta có: \(\frac{1}{A}=\frac{a+b}{a}=1+\frac{b}{a}\)
Vì \(\frac{a}{b}\)là phân số tối giản nên \(\frac{b}{a}\)cũng là phân số tối giản
\(\Rightarrow\)\(\frac{1}{A}\)là phân số tối giản
\(\Rightarrow\)\(\frac{a}{a+b}\)là phân số tối giản
Đặt \(A=\frac{a}{a+b}\)
Ta có: \(\frac{1}{A}=\frac{a+b}{a}=1+\frac{b}{a}\)
Vì \(\frac{a}{b}\)là phân số tối giản nên \(\frac{b}{a}\)cũng là phân số tối giản
\(\Rightarrow\)\(\frac{1}{A}\)là phân số tối giản
\(\Rightarrow\)\(\frac{a}{a+b}\)là phân số tối giản
5,(9) = 5 + 0,(9) = 5 + 9.0,(1) \(=5+9.\frac{1}{9}\)= 5 + 1 = 6
\(5,9=\frac{59}{10}\)