Tìm trên trục hoành các điểm có hoành độ là số nguyên sao cho nếu qua điểm đó ta dựng đường thẳng vuông góc với trục hoành thì đường thẳng ấy cắt cả ba đường thẳng (d1):x-2y=3 , (d2):x-3y=2 , (d3):x-5y= -7 tại các điểm có tọa độ là các số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này tương tự như bài cô đã chứng minh.
Gọi các điểm thỏa mãn yêu cầu có tọa độ \(\left(0;b\right)\)
Khi đó hệ sau có nghiệm nguyên \(\hept{\begin{cases}x+2b=6\\2x-3b=4\end{cases}\Rightarrow6-2b;\frac{4+3b}{2}\in Z.}\)
b nguyên nên 6 - 2b nguyên là hiển nhiên. Để \(\frac{4+3b}{2}\in Z\) thì b = 2k.
Vậy các điểm thỏa mãn sẽ có tọa độ là (0;2k) (\(k\in Z\) ).
a, Phương trình hoành độ giao điểm là \(\dfrac{3}{2}x=3x-3\Leftrightarrow\dfrac{3}{2}x=3\Leftrightarrow x=2\Leftrightarrow y=3\Leftrightarrow A\left(2;3\right)\)
Vậy \(A\left(2;3\right)\) là giao điểm của 2 đt
b, Gọi \(\left(d_3\right):y=ax+b\left(a\ne0\right)\) là đt cần tìm
\(\left(d_3\right)//\left(d_1\right)\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}\\b\ne0\end{matrix}\right.\)
PT giao của d3 với Ox tại hoành độ -6 là \(-6a+b=0\Leftrightarrow b=6\cdot\dfrac{3}{2}=9\)
Vậy \(\left(d_3\right):y=\dfrac{3}{2}x+9\)
b) d 1 cắt trục hoành tại điểm có hoành độ bằng – 3 khi:
0 = -3m + 2m - 1 ⇔ -m - 1 = 0 ⇔ m = -1
Vậy với m = -1 thì d 1 cắt trục hoành tại điểm có hoành độ bằng – 3
Lời giải:
Gọi ptđt là $(d3): y=ax+b$. Theo bài ra thì:
$(2;-1)\in (d3)$ nên:
$-1=2a+b(1)$
$(d3)$ cắt trục hoành tại hoành độ $-5$ tức là $(-5,0)\in (d3)$
$\Rightarrow 0=-5a+b(2)$
Từ $(1); (2)\Rightarrow a=\frac{-1}{7}; b=\frac{-5}{7}$
Vậy ptđt cần tìm là: $y=\frac{-1}{7}x-\frac{5}{7}$
1)
Phương trình hoành độ giao điểm của (d1) với (d2) là:
2x+2=-x+2
nên x=0
Thay x=0 vào (d1), ta được:
y=2x+2=2
Vậy: A(0;2)
Thay y=0 vào (d1), ta được:
2x+2=0
nên 2x=-2
hay x=-1
Vậy: B(-1;0)
Thay y=0 vào (d2), ta được:
-x+2=0
hay x=2
Vậy: C(2;0)
Gọi các điểm thỏa mãn điều kiện có tọa độ là \(\left(a;0\right)\)
Khi đó hệ sau có nghiệm nguyên:\(\hept{\begin{cases}a-2y=3\\a-3y=2\\x-5y=-7\end{cases}\Rightarrow\frac{a-3}{2};\frac{a-2}{3};\frac{a+7}{5}}\) nguyên.
TH1: \(a\ge0.\)
\(\frac{a-3}{2}\in Z\) nên a lẻ; \(\frac{a+7}{5}\in Z\Rightarrow\) a chia 5 dư 3. Kết hợp hai điều kiện trên thì a có tận cùng là 3.
Khi đó a - 2 có tận cùng là 1. Vậy để \(\frac{a-2}{3}\in Z\) thì a - 2 = 34k \(\left(k\in N;k\ge1\right)\)
Vậy a = 2 +34k \(\left(k\in N;k\ge1\right)\)
TH2: a < 0
\(\frac{a-3}{2}\in Z\Rightarrow\)- a là số tự nhiên lẻ. \(\frac{a+7}{5}\in Z\Rightarrow\) -a chia 5 dư 2. Vậy -a có tận cùng là 7, vậy a có tận cùng là 7.
Vậy thì a - 2 có tận cùng là 9. Vậy a - 2 = -34k+2 \(\left(k\in N;k\ge0\right)\)
Hay a = 2 - 34k+2 \(\left(k\in N;k\ge0\right)\)
Tóm lại các điểm thỏa mãn điều kiện của đề bài sẽ có tọa độ là \(\left(2+3^{4k};0\right)\) với \(\left(k\in N;k\ge1\right)\) hoặc \(\left(2-3^{4k+2};0\right)\) với \(\left(k\in N;k\ge0\right)\)