K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2022

ta có \(\sqrt{\left(a+c\right)\left(a+b\right)}\ge a+\sqrt{bc}\left(1\right)\)

thật vậy \(\left(1\right)\Leftrightarrow\left(a+c\right)\left(a+b\right)\ge a^2+2a\sqrt{bc}+bc\)

\(\Leftrightarrow ab+ac\ge2a\sqrt{bc}\Leftrightarrow b+c\ge2\sqrt{bc}\)(đúng theo BĐT cosi)

cminh tương tự \(\Rightarrow\sqrt{\left(b+c\right)\left(b+a\right)}\ge b+\sqrt{ac};\sqrt{\left(c+a\right)\left(c+b\right)}\ge c+\sqrt{ab}\)

\(\Rightarrow\dfrac{a}{\sqrt{\left(a+c\right)\left(a+b\right)}}\le\dfrac{a}{a+\sqrt{bc}}=\dfrac{1}{1+\dfrac{\sqrt{bc}}{a}}\)

\(tt\Rightarrow P\le\dfrac{1}{1+\dfrac{\sqrt{bc}}{a}}+\dfrac{1}{1+\dfrac{\sqrt{ac}}{b}}+\dfrac{1}{1+\dfrac{\sqrt{ab}}{c}}\)

\(đặt\left(\dfrac{\sqrt{bc}}{a};\dfrac{\sqrt{ac}}{b};\dfrac{\sqrt{ab}}{c}\right)=\left(x;y;z\right)\Rightarrow xyz=1\)

\(\Rightarrow P\le\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\)

ta đi chứng minh \(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\le\dfrac{3}{2}\)

\(\Leftrightarrow2\left(y+1\right)\left(z+1\right)+2\left(x+1\right)\left(z+1\right)+2\left(x+1\right)\left(y+1\right)\le3\left(x+1\right)\left(y+1\right)\left(z+1\right)\)

\(\Leftrightarrow2xy+2xz+2yz+4x+4y+4z+6\le3xyz+3+3xy+3xz+3yz+3x+3y+3z\)

ủa đến đây theo cách làm bth đúng rồi mà sao không ra nhỉ bạn xem lại hộ mình giống bài  n ày mình từng làm r

https://hoc24.vn/vip/289470733648/page-12

12 tháng 6 2022

Toán 9

NV
21 tháng 8 2021

\(Q=\sum\dfrac{\left(a+b\right)^2}{\sqrt{2\left(b+c\right)^2+bc}}\ge\sum\dfrac{\left(a+b\right)^2}{\sqrt{2\left(b+c\right)^2+\dfrac{1}{4}\left(b+c\right)^2}}=\dfrac{2}{3}\sum\dfrac{\left(a+b\right)^2}{b+c}\)

\(Q\ge\dfrac{2}{3}.\dfrac{\left(a+b+b+c+c+a\right)^2}{a+b+b+c+c+a}=\dfrac{4}{3}\left(a+b+c\right)=\dfrac{4}{3}\)

21 tháng 8 2021

∑ cái này nghĩa là gì ạ

28 tháng 5 2022

Ta có : \(b=\dfrac{c+a}{2}\Rightarrow2b=c+a\Rightarrow a-b=b-c\)

Dó đó : \(P=\left(\dfrac{1}{\sqrt{a}+\sqrt{b}}+\dfrac{1}{\sqrt{b}+\sqrt{c}}\right)\left(\sqrt{a}+\sqrt{c}\right)\)

\(P=\left[\dfrac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}+\dfrac{\sqrt{b}-\sqrt{c}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}-\sqrt{c}\right)}\right]\left(\sqrt{a}+\sqrt{c}\right)\)

\(P=\left[\dfrac{\sqrt{a}-\sqrt{b}}{a-b}+\dfrac{\sqrt{b}-\sqrt{c}}{b-c}\right]\left(\sqrt{a}+\sqrt{c}\right)\)

\(P=\left[\dfrac{\sqrt{a}-\sqrt{b}}{b-c}+\dfrac{\sqrt{b}-\sqrt{c}}{b-c}\right]\left(\sqrt{a}+\sqrt{c}\right)\) Vì  \(\left(a-b=b-c\right)\)

 

\(P=\left[\dfrac{\sqrt{a}-\sqrt{b}+\sqrt{b}-\sqrt{c}}{b-c}\right]\left(\sqrt{a}+\sqrt{c}\right)\)

\(P=\dfrac{\sqrt{a}-\sqrt{c}}{b-c}\left(\sqrt{a}+\sqrt{c}\right)\)

\(P=\dfrac{a-c}{a-b}=\dfrac{a-c}{a-\dfrac{a+c}{2}}=\dfrac{a-c}{\dfrac{2a-a-c}{2}}=\dfrac{a-c}{\dfrac{a-c}{2}}=2\)

26 tháng 8 2021

`sqrta+sqrtb+sqrtc=2`

`<=>(sqrta+sqrtb+sqrtc)^2=4`

`<=>a+b+c+2sqrt{ab}+2sqrt{bc}+2sqrt{ca}=4`

`<=>2sqrt{ab}+2sqrt{bc}+2sqrt{ca}=4-(a+b+c)=4-2-2`

`<=>sqrt{ab}+sqrt{bc}+sqrt{ca}=1`

`=>a+1=a+sqrt{ab}+sqrt{bc}+sqrt{ca}=sqrta(sqrta+sqrtb)+sqrtc(sqrta+sqrtb)=(sqrta+sqrtb)(sqrta+sqrtc)`

Tương tự:`b+1=(sqrtb+sqrta)(sqrtb+sqrtc)`

`c+1=(sqrtc+sqrta)(sqrtc+sqrtb)`

`=>VT=sqrta/((sqrta+sqrtb)(sqrta+sqrtc))+sqrtb/((sqrtb+sqrta)(sqrtb+sqrtc))+sqrtc/((sqrtc+sqrta)(sqrtc+sqrtb))`

`=>VT=(sqrta(sqrtb+sqrtc)+sqrtb(sqrtc+sqrta)+sqrtc(sqrta+sqrtb))/((sqrta+sqrtb)(sqrtb+sqrtc)(sqrtc+sqrta))`

`=(sqrt{ab}+sqrt{ac}+sqrt{bc}+sqrt{ab}+sqrt{ac}+sqrt{bc})/((sqrta+sqrtb)(sqrtb+sqrtc)(sqrtc+sqrta))`

`=(2(sqrt{ab}+sqrt{bc}+sqrt{ca}))/((sqrta+sqrtb)(sqrtb+sqrtc)(sqrtc+sqrta))`

`=2/((sqrta+sqrtb)(sqrtb+sqrtc)(sqrtc+sqrta))`

`=2/\sqrt{[(sqrta+sqrtb)(sqrtb+sqrtc)(sqrtc+sqrta)]^2}`

`=2/\sqrt{(sqrta+sqrtb)(sqrta+sqrtc)(sqrtb+sqrta)(sqrtb+sqrtc)(sqrtc+sqrta)(sqrtc+sqrtb)}`

`=2/\sqrt{(1+a)(1+b)(1+c)}=>đpcm`

26 tháng 8 2021

a ơi giả thiết là a+b+c=\(\sqrt{a}+\sqrt{b}+\sqrt{c}\)=2 nhé a

24 tháng 12 2018

bai nay t lam roi vao trang chu cua nick thangbnsh cua t keo xuong tim la thay

24 tháng 12 2018

Câu hỏi của Tuyển Trần Thị - Toán lớp 9 | Học trực tuyến

NV
13 tháng 1

Bunhiacopxki:

\(\left(b+a+a\right)\left(b+c+\dfrac{c^2}{a}\right)\ge\left(b+\sqrt{ca}+c\right)^2\)

\(\Rightarrow\dfrac{2a^2+ab}{\left(b+\sqrt{ca}+c\right)^2}\ge\dfrac{2a^2+ab}{\left(2a+b\right)\left(b+c+\dfrac{c^2}{a}\right)}=\dfrac{a^2}{c^2+ab+bc}\)

Tương tự:

\(\dfrac{2b^2+bc}{\left(c+\sqrt{ca}+a\right)^2}\ge\dfrac{b^2}{a^2+ab+bc}\)

\(\dfrac{2c^2+ca}{\left(a+\sqrt{bc}+b\right)^2}\ge\dfrac{c^2}{b^2+ac+bc}\)

\(\Rightarrow P\ge\dfrac{a^2}{c^2+ab+ac}+\dfrac{b^2}{a^2+ab+bc}+\dfrac{c^2}{b^2+ac+bc}\)

\(\Rightarrow P\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=1\)

Dấu "=" xảy ra khi \(a=b=c\)

22 tháng 12 2021

Ta có \(\sqrt{bc\left(1+a^2\right)}=\sqrt{bc+a^2bc}=\sqrt{bc+a\left(a+b+c\right)}\)

\(=\sqrt{\left(a+b\right)\left(a+c\right)}\)

Đặt BT đề cho là P

\(\Leftrightarrow P=\sum\dfrac{a}{\sqrt{bc\left(1+a^2\right)}}=\sum\sqrt{\dfrac{a}{a+b}\cdot\dfrac{a}{a+c}}\\ \Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{b+c}+\dfrac{b}{b+a}+\dfrac{c}{c+a}+\dfrac{c}{c+b}\right)\\ \Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{1}{2}\cdot3=\dfrac{3}{2}\)

Dấu \("="\Leftrightarrow a=b=c=\sqrt{3}\)

28 tháng 6 2021

hmmm-khó đấy

 

NV
28 tháng 6 2021

Đề bài hình như bị sai em, thay điểm rơi ko thỏa mãn

Biểu thức là \(a+b+\sqrt{2\left(a+c\right)}\) mới đúng

13 tháng 3 2022