cho tam giác ABC vuông tại A , M là một điểm thuộc đoạn thẳng BC sao cho M là trung điểm của BC . Với E là trung điểm của AB, F là trung điểm của AC. Kẻ ME;MF. Chứng tỏ rằng MF song song với AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Xét tam giác ABC vuông cân tại A có:
AO là trung tuyến ứng với cạnh huyền BC (O là trung điểm BC)
=>AO=BO=CO=\(\dfrac{1}{2}\)BC ; AO⊥BC tại O.
- Ta có: \(\widehat{EAF}=\widehat{AEM}=\widehat{AFM}=90^0\) nên AEMF là hình chữ nhật.
=> AE=MF ; AB//MF
- Ta có: \(\widehat{ABC}=\widehat{FMC}=45^0\) (AB//MF, tam giác ABC vuông cân tại A).
Mà tam giác MFC vuông tại F (MF⊥AC tại F) nên tam giác MFC vuông cân tại F.
=>MF=CF=AE.
- Ta có: Tam giác AOB vuông tại O (AO⊥BC tại O) mà AO=BO (cmt) nên tam giác AOB vuông cân tại O.
- Xét tam giác OAE và tam giác OCF có:
OA=OC (cmt)
\(\widehat{OCF}=\widehat{OAE}=45^0\) (tam giác ABC vuông cân tại A, tam giác AOB vuông cân tại O).
AE=CF (cmt)
=>Tam giác OAE= Tam giác OCF (c-g-c)
=> OE=OF (2 cạnh tương ứng).
\(\widehat{AOE}=\widehat{COF}\) (2 góc tương ứng) mà \(\widehat{COF}+\widehat{AOF}=90^0\) (AO⊥BC tại O).
nên \(\widehat{AOE}+\widehat{AOF}=90^0\) =>\(\widehat{EOF}=90^0\) =>Tam giác OEF vuông tại O mà OE=OF (cmt) nên tam giác OEF vuông cân tại O.
a: Xét tứ giác AEMF có
\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)
Do đó: AEMF là hình chữ nhật
a: Xét ΔCAB có
M là trung điểm của CB
ME//BA
Do đó: E là trung điểm của AC
b: Xét tứ giác AFME có
AF//ME
AE//MF
Do đó: AFME là hình bình hành
=>AM cắt FE tại trung điểm của mỗi đường
=>E,O,F thẳng hàng
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)
b: Xét tứ giác ADME có
góc ADM=góc AEM=góc DAE=90 độ
nên ADME là hình chữ nhật
c: Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó E là trung điểm của AC
Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
=>ME//BD và ME=BD
=>MEDB là hình bình hành
=>MD cắtEB tại trung điểm của mỗi đường
=>B,K,E thẳng hàng
a: Xét ΔCAB có
M là trung điểm của CB
ME//BA
Do đó: E là trung điểm của AC
a: Xét ΔCAB có
M là trung điểm của CB
ME//BA
Do đó: E là trung điểm của AC
b: Xét tứ giác AFME có
AF//ME
AE//MF
Do đó: AFME là hình bình hành
=>AM cắt FE tại trung điểm của mỗi đường
=>E,O,F thẳng hàng
a) Xét tứ giác AEMF có
\(\widehat{EAF}=90^0\)(\(\widehat{BAC}=90^0\), E∈AB, F∈AC)
\(\widehat{AEM}=90^0\)(ME⊥AB)
\(\widehat{AFM}=90^0\)(MF⊥AC)
Do đó: AEMF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=5^2+12^2=169\)
\(\Leftrightarrow BC=\sqrt{169}=13cm\)
Ta có: ΔABC vuông tại A(gt)
mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)
nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
hay \(AM=\dfrac{13}{2}=6.5cm\)
Ta có: AEMF là hình chữ nhật(cmt)
nên AM=EF(Hai đường chéo của hình chữ nhật AEMF)
mà AM=6,5cm
nên EF=6,5cm
Vậy: EF=6,5cm
c) Xét ΔABC có
M là trung điểm của BC(gt)
ME//AC(ME//AF, C∈AF)
Do đó: E là trung điểm của AB(Định lí 1 đường trung bình của tam giác)
⇒\(AE=\dfrac{AB}{2}=\dfrac{5}{2}=2.5cm\)
Xét ΔABC có
M là trung điểm của BC(gt)
MF//AB(MF//AE, B∈AE)
Do đó: F là trung điểm của AC(Định lí 1 đường trung bình của tam giác)
⇒\(AF=\dfrac{AC}{2}=\dfrac{12}{2}=6cm\)
Ta có: AEMF là hình chữ nhật(cmt)
nên \(S_{AEMF}=AE\cdot AF=2.5\cdot6=15cm^2\)
áp dụng tính đường trung bình của tam giác đấy bạn!!!