Cho tam giác vuông ABC vuông tại A, biết AB=  6cm, AC=8 cm. M là trung điểm của BC kẻ ME...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2022

a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)

b: Xét tứ giác ADME có

góc ADM=góc AEM=góc DAE=90 độ

nên ADME là hình chữ nhật

c: Xét ΔABC có

M là trung điểm của BC

ME//AB

Do đó E là trung điểm của AC

Xét ΔABC có

M là trung điểm của BC

MD//AC

Do đó: D là trung điểm của AB

=>ME//BD và ME=BD

=>MEDB là hình bình hành

=>MD cắtEB tại trung điểm của mỗi đường

=>B,K,E thẳng hàng

9 tháng 1 2018

Chỗ mình kiểm tra học kì có câu này mà bây giờ bắt làm lại để nộp mà k biết làm

16 tháng 12 2016

A B C M D E H K

11 tháng 2 2017

mk ko biết

a: Xét tứ giác ADME có

góc ADM=góc AEM=góc DAE=90 độ

nên ADME là hình chữ nhật

b: Xét tứ giác AMBP có

D là trung điểm chung của AB và MP

MA=MB

Do đó: AMBP là hình thoi

=>ABlà phân giác của góc MAP(1)

c: Xét tứ giác AMCQ có

E là trung điểm chung của AC và MQ

MA=MC

Do đó: AMCQ là hình thoi

=>AC là phân giác của góc MAQ(2)

Từ (1), (2) suy ra góc PAQ=2*90=180 độ

=>P,A,Q thẳng hàng

mà AP=AQ

nên A là trung điểm của PQ

a: Xét tứ giác ADME có 

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

Do đó: ADME là hình chữ nhật

a: Xét tứ giác ADME có

góc ADM=góc AEM=góc DAE=90 độ

=>ADME là hình chữ nhật

b: ADME là hình chữ nhật

=>AM cắt DE tại trung điểm của mỗi đường

mà I là trung điểm của DE

nên I là trung điểm của AM

=>A,I,M thẳng hàng

c: Xét ΔBMP có

BD vừa là đường cao, vừa là đường trung tuyến

Do đó: ΔBMP cân tại B

=>BA là phân giác của góc MBP

Xét ΔAMP có

AD là đường cao, là đường trung tuyến

Do đó: ΔAMP cân tại A

=>AB là phân giác của góc MAP(1)

Xét ΔAMQ có

AC vừa là đường cao, vừa là đường trung tuyến

Do đó; ΔAMQ cân tại A

=>AC là phân giác của góc MAQ(2)

Từ (1), (2) suy ra góc PAQ=2*góc BAC=180 độ

=>P,A,Q thẳng hàng

Xét ΔAMB và ΔAPB có

AM=AP

AB chung

BM=BP

Do đó: ΔAMB=ΔAPB

=>góc AMB=góc APB

Xét ΔAMC và ΔAQC có

AM=AQ

góc MAC=góc QAC

AC chung

Do đó: ΔAMC=ΔAQC

=>góc AMC=góc AQC

=>góc AQC+góc AMB=180 độ

mà góc AMB=góc APB

nên góc AQC+góc APB=180 độ

=>BP//QC

=>BPQC là hình thang

d: AM=AP

AM=AQ

Do đó: AP=AQ

mà P,A,Q thẳng hàng

nên A là trung điểm của PQ